Spring 2016
ECE 564 Modern Light Microscopy
Text: “Introduction to Optical Microscopy” by J. Mertz (Roberts and Company, 2010)
“Quantitative phase imaging of cells and tissues” by G. Popescu
(McGrawHill, 2011)
Schedule: 11:0012:20 TR,
3020 ECE Building;
Teaching Assistant:
Office Hours: Thursday 12:302:00, 4055
Beckman
# 
Day 
Date 
Topic 
Supporting Material 
Homework 
Links 
References 
28 
T 
Jan
19 
Introduction 

27 
R 
Jan
21 
Groundwork:
2D, 3D Fourier transforms 

26 
T 
Jan
26 
Groundwork:
2D, 3D Fourier transforms 

HW 1 

25 
R 
Jan
28 
Light
Microscopy: ECE 460 review 


Popescu
[4] 

24 
T 
Feb
02 
Light
Microscopy: ECE 460 review 

HW2 


23 
R 
Feb
04 
Holography 
Holography 



22 
T 
Feb
9 
Quantitative
phase imaging (QPI) 
QPI 



21 
R 
Feb
11 
Quantitative
phase imaging (QPI) 

HW3 


20 
T 
Feb
16 
Prof.
Andrew Smith, Guest Lecture: Nanoparticle
Engineering 



19 
R 
Feb
18 
Propagation
in inhomogeneous media 



18 
T 
Feb
23 
Prof.
Stephen Boppart, Guest Lecture: Optical
Coherence Tomography 




17 
R 
Feb
25 
Dynamic
light scattering 
HW4 

Berne & Pecora
[8] 

16 
T 
Mar
01 
Prof.
Kimani Toussaint, Guest Lecture: Nonlinear
Microscopy 


15 
R 
Mar
03 
Propagation
of Gaussian beams 
HW5 

Yariv Optical waves in crystals 

14 
T 
Mar
8 
Propagation
of Gaussian beams 

HW6 


13 
R 
Mar
10 
Confocal
microscopy 




12 
T 
Mar
15 
Review 



R 
Mar 17 
Midterm 




T 
Mar 22 
Spring Break 




R 
Mar 24 
Spring Break 


11 
T 
Mar
29 
Optical coherence tomography 




10 
R 
Mar
31 
Optical coherence tomography 




9 
T 
Apr
05 
Propagation
in nonlinear media 



8 
R 
Apr
7 
Propagation
in nonlinear media 


7 
T 
Apr
12 
Nonlinear microscopy 

Masters and So [12] 

6 
R 
Apr
14 
Nonlinear microscopy 

5 
T 
Apr
19 
Superresolution microscopy 




4 
R 
Apr
21 
Superresolution microscopy 



3 
T 
Apr
26 
Student
TALKS 



2 
R 
Apr
28 
Student TALKS 


1 
T 
May
03 
Student TALKS 



R 
May 5 
Reading Day 



R 
May 5 
Reports due by email; by
5PM May 5 

Grading formula: Midterm 30%; Final report  20%; Homework  30%; Presentation 20%; Class participation  5% .
REFERENCES
1. A. Papoulis The Fourier
integral and its applications (McGrawHill, New York,, 1962).
2. R. N. Bracewell The
Fourier transform and its applications (McGraw Hill, Boston, 2000).
3. J. W. Goodman Introduction
to Fourier optics (McGrawHill, New York, 1996).
4. G. Popescu Quantitative
phase imaging of cells and tissues (McGrawHill, New York, 2011).
6. H. C. van de Hulst Light
Scattering by Small Particles (Dover Publications New York, 1981).
10. R. W. Boyd Nonlinear optics (Academic Press, Amsterdam ; Boston, 2008).
11. Y. R. Shen The principles of nonlinear optics (J. Wiley, New York, 1984).