7. DYNAMIC LIGHT SCATTERING

7.1 First order temporal autocorrelation function.

e Dynamic light scattering (DLS) studies the properties of inhomogeneous and
dynamic media. A generic situation is illustrated in Fig. 1, where a plane wave

scatters on a system of randomly moving particles.
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Figure 7-1. Light scattering on a system of moving particles.
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e At observation point P of vector position R, particle m, of fluctuating position

r,, (t), scatters along direction R —r, (t).

m
e For weakly scattering media, the problem can be described by the Born
approximation, where we consider the scattering medium to be discrete and the
particle positions to fluctuate in time.

e Define a dynamic scattering potential, as a collection of point scatterers.
F(rt)=F(r)*2s[r-r(t)]. (7.1)
j

e Equation 1 is analogous to the earlier equation when describing static scattering
under the Born approximation, now the particle positions change in time.
e |, is the scattering potential of a single particle and the summation is over all

the particles. Variable t is due to fluctuations in particle positions and should not

be confused with the reciprocal variable of optical frequency w.



e The scattering potential is still in the frequency domain, F (r, a)); we ignored the

explicit @ argument for simplicity. The dynamic scattering amplitude is given

by the Fourier transform of Eq. 1,
f(a,t)=f,( Ze'qr (7.2)
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e The dynamic signal originates in the superposition of scattered fields with

fluctuating phases. To characterize these fluctuations, we calculate the temporal

autocorrelation of the field scattered along K., as
(a.7)= < f(a.t) f*(a,t+ T)>
= ‘ fo (q)‘2 <Zeiq[rm(t+r)rn(t)] > (73)
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e [ is the first-order (field) correlation function, to be distinguished from the

Intensity correlation. In Eq. 3, the angular brackets denote temporal averaging,

< f (t)> == f (t)dt. Assume particles move independently from one another,

always true for a sparse distribution of particles. Under these circumstances,

correlations between displacements of different particles vanish,

<eiq[rm(t+r)—rn(t)}> =0, for m # n. (7.4)

e Combining Egs. 3 and 4, we obtain

r(0.r)= o, (@) e )

- No, (q)<eiq["(t+f)—"(t)]>

: (7.5)



e 0,(q)= ‘ f, (q)‘2 1s the differential cross section associated with a single particle

and N 1s the total number of particles in the scattering volume.

e We assumed that all terms in the summation are equal, i.e. all particles are
governed by the same statistics. The temporal autocorrelation I' 1s typically
normalized to give

_T(a.7)
Noy (q) (7.6)

_ <eiq[rm(t+r)—rm(t)]>

o The subscript 1 indicates that g, is a first-order correlation function.

g,(a.7)



7.2 Second-order correlation function. The Siegert relationship.

e In practice, one only has access to the intensity scattered along direction K. An

intensity autocorrelation function is the measurable quantity, defined as
[(t)-I(t+7
gz(f):< O-1t )
(1))
e where

1(t)=> U, (t)-U* (), (7.8)

e The angular brackets denote temporal average, and the double summation is

(7.7)

over the ensemble of the scattered fields. Combining Egs. 7 and 8, we obtain

-<mzjr;um(t)-un *(t)-kZI:Uk(t+T)U| *(t+r)>.(7.9)
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e In Eq. 9, there are two different contributions:
o for m=n=k =1, summation gives <I (t)2>

ofor m=l and n=k, m#n, we obtain terms of the form

<Z:Img1 Z:Ing1 > Because the particles scattered independently

from one another, all the other terms vanish.

e Thus, Eq. 9 becomes
qz(r):<|(1t)2>.[<|(t)2>+<|(t)2>.\g1(f)ﬂ,(7.10)

e which readily simplifies to

9,(z)=1+|g, () (7.11)




e Equation 11 connects the first-order and the second-order correlation functions
and is known as the Siegert relationship. To evaluate the average <eiqAr(T)>, with
Ar the displacement of a single particle, we need information regarding the
physical phenomenon that generates fluctuations in the particle positions. This

will provide the displacement probability density, to evaluate the average.

e Let us assume that this probability density is w (r,t). The average of interest can

be calculated as an ensemble average,
<eiqr(t)> _ jw(r,t)-eiqr(t)d 3
\%

=7(q,t)

(7.12)

e The average 1s simply the 3D spatial Fourier transform of the probability density

l//(r,t). In the following section, we determine y and the average <eiqr(t)> for

diffusive particles, which is a situation widely encountered in practice.
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7.3 Particles under Brownian motion.

e For particles fluctuating at thermal equilibrium, undergoing Brownian motion,
the probability density associated with a particle at position r and time t verifies

the (homogeneous) diffusion equation
szw(r,t)—gw(r,t):o. (7.13)

e D is the diffusion coefficient, which for a spherical particle of radius a is given
by the Stokes-Einstein equation
KeT
67rna

D= (7.14)

e k, is the Boltzmann constant, (kB:1.38-10_23 %), T is the absolute

temperature (T=298K for room temperature), 77 the viscosity of the surrounding

fluid (7 =107 N '%12 ~107Pa-s for water at room temperature).
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Taking the spatial Fourier transform of Eq. 13, we obtain

oy (0.t i

WY _ by (g (7.15)
ot

The first order differential equation in time immediately yields

7 (g,t)=e ™" (7.16)

It follows from Eqgs 6, 13 and 16 that the first order correlation function for

Brownian particles has the form

0,(a.7) = (") (7.17)

— e— quz' .

Equation 17 is commonly used in dynamic light scattering. It establishes, for

: : 4z .
measurements at a fixed scattering angle &, which corresponds to q = 731n 9/,

the field correlation function has a characteristic time 7, = %)qz :
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e The larger the scattering angle and the larger the diffusion coefficient, the

shorter the correlation time 7,. For example, a particle of 1uym diameter,
suspended 1n water at room temperature, has a characteristic 7, = 2.5ms.

e Experimentally one has access directly to the second-order correlation function
and, using the Siegert relationship, information about the diffusion coefficient

can be obtained via

9,(7) =1+e2097, (7.18)
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e Figure 2 shows a qualitative description of the measured intensity and ¢, (r) for

two different correlation times.
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Figure 7-2. DLS signals in two different conditions.
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The decay (correlation) time has the form

— 1 —
~Ba -
_ 6zna
- q’k,T

4

(7.19)

(A) (B)

Therefore z,”” >7,’ can be obtained in a variety of conditions A and B:
a, >ag, 77, > Mg, s <0z, T, <Tg (all other parameters constant).

Sometimes, the power spectrum of intensity fluctuations 1s measured,
P(Cl,a))=J.l (a,t)-1(q,t+7)e""dr
= F I:g2 (qat):|

Equation 20 states that the measured power spectrum 1s related to g, (T) via a

(7.20)

Fourier transform, which simply follows from the Wiener-Kintchin theorem.
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e Thus, for diffusive particles, we expect a power spectrum of Lorentzian shape

P(w)= F{e;}

Aw
@ +(Aa))2

, (7.21)

e With Aw = % . Thus, the width of the power spectrum is equally informative.
0
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