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7. DYNAMIC LIGHT SCATTERING 

7.1 First order temporal autocorrelation function. 
 Dynamic light scattering (DLS) studies the properties of inhomogeneous and 

dynamic media. A generic situation is illustrated in Fig. 1, where a plane wave 

scatters on a system of randomly moving particles. 
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Figure 7-1. Light scattering on a system of moving particles. 
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 At observation point P of vector position R, particle m, of fluctuating position 

 m tr , scatters along direction  m tR r .  

 For weakly scattering media, the problem can be described by the Born 

approximation, where we consider the scattering medium to be discrete and the 

particle positions to fluctuate in time.  

 Define a dynamic scattering potential, as a collection of point scatterers. 
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 Equation 1 is analogous to the earlier equation when describing static scattering 

under the Born approximation, now the particle positions change in time.  

 0F  is the scattering potential of a single particle and the summation is over all 

the particles. Variable t is due to fluctuations in particle positions and should not 

be confused with the reciprocal variable of optical frequency  .  
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 The scattering potential is still in the frequency domain,  ,F r ; we ignored the 

explicit   argument for simplicity. The dynamic scattering amplitude is given 

by the Fourier transform of Eq. 1, 
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 The dynamic signal originates in the superposition of scattered fields with 

fluctuating phases. To characterize these fluctuations, we calculate the temporal 

autocorrelation of the field scattered along sk , as 
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   is the first-order (field) correlation function, to be distinguished from the 

intensity correlation. In Eq. 3, the angular brackets denote temporal averaging, 
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  . Assume particles move independently from one another, 

always true for a sparse distribution of particles. Under these circumstances, 

correlations between displacements of different particles vanish, 
    0, for .m ni t te m n     q r r   (7.4) 

 Combining Eqs. 3 and 4, we obtain 
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     2
0d q f q   is the differential cross section associated with a single particle 

and N is the total number of particles in the scattering volume.  

 We assumed that all terms in the summation are equal, i.e. all particles are 

governed by the same statistics. The temporal autocorrelation   is typically 

normalized to give 
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 The subscript 1 indicates that 1g  is a first-order correlation function. 
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7.2 Second-order correlation function. The Siegert relationship. 
 In practice, one only has access to the intensity scattered along direction sk . An 

intensity autocorrelation function is the measurable quantity, defined as 
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 where 

     
,

* ,m n
m n

I t U t U t    (7.8) 

 The angular brackets denote temporal average, and the double summation is 

over the ensemble of the scattered fields. Combining Eqs. 7 and 8, we obtain 
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 In Eq. 9, there are two different contributions:  

o for m n k l   , summation gives  2I t  

o for m=l and n=k, m≠n, we obtain terms of the form 

   1 1 *m n
m n

I g I g   . Because the particles scattered independently 

from one another, all the other terms vanish.  

 Thus, Eq. 9 becomes 
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 which readily simplifies to 
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 Equation 11 connects the first-order and the second-order correlation functions 

and is known as the Siegert relationship. To evaluate the average  ie q r , with 

r  the displacement of a single particle, we need information regarding the 

physical phenomenon that generates fluctuations in the particle positions. This 

will provide the displacement probability density, to evaluate the average. 

 Let us assume that this probability density is  ,t r . The average of interest can 

be calculated as an ensemble average, 
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 The average is simply the 3D spatial Fourier transform of the probability density 

 ,t r . In the following section, we determine   and the average  i te qr  for 

diffusive particles, which is a situation widely encountered in practice. 



9 
 

7.3 Particles under Brownian motion. 

 For particles fluctuating at thermal equilibrium, undergoing Brownian motion, 

the probability density associated with a particle at position r and time t verifies 

the (homogeneous) diffusion equation 
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 D is the diffusion coefficient, which for a spherical particle of radius a is given 

by the Stokes-Einstein equation 

6
Bk TD

a
   (7.14) 

 Bk  is the Boltzmann constant,  23 J1.38 10 KBk   , T is the absolute 

temperature (T=298K for room temperature),   the viscosity of the surrounding 

fluid ( 3 2
2

N s10 10 Pa sm      for water at room temperature).  
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 Taking the spatial Fourier transform of Eq. 13, we obtain 
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 The first order differential equation in time immediately yields 
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 It follows from Eqs 6, 13 and 16 that the first order correlation function for 

Brownian particles has the form 
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 Equation 17 is commonly used in dynamic light scattering. It establishes, for 

measurements at a fixed scattering angle  , which corresponds to 4 sin 2q  


 , 

the field correlation function has a characteristic time 20
1

Dq  .  
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 The larger the scattering angle and the larger the diffusion coefficient, the 

shorter the correlation time 0 . For example, a particle of 1 m  diameter, 

suspended in water at room temperature, has a characteristic 0 2.5ms  . 

 Experimentally one has access directly to the second-order correlation function 

and, using the Siegert relationship, information about the diffusion coefficient 

can be obtained via 

  22
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 Figure 2 shows a qualitative description of the measured intensity and  2g   for 

two different correlation times. 
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Figure 7-2. DLS signals in two different conditions. 
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 The decay (correlation) time has the form 
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 Therefore    
0 0

A B   can be obtained in a variety of conditions A and B: 

A Ba a , A B  , A Bq q , A BT T  (all other parameters constant).  

 Sometimes, the power spectrum of intensity fluctuations is measured, 
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 Equation 20 states that the measured power spectrum is related to  2g   via a 

Fourier transform, which simply follows from the Wiener-Kintchin theorem.  
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 Thus, for diffusive particles, we expect a power spectrum of Lorentzian shape 
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 With 
0

1   . Thus, the width of the power spectrum is equally informative. 


