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7. DYNAMIC LIGHT SCATTERING 

7.1 First order temporal autocorrelation function. 
 Dynamic light scattering (DLS) studies the properties of inhomogeneous and 

dynamic media. A generic situation is illustrated in Fig. 1, where a plane wave 

scatters on a system of randomly moving particles. 
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Figure 7-1. Light scattering on a system of moving particles. 
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 At observation point P of vector position R, particle m, of fluctuating position 

 m tr , scatters along direction  m tR r .  

 For weakly scattering media, the problem can be described by the Born 

approximation, where we consider the scattering medium to be discrete and the 

particle positions to fluctuate in time.  

 Define a dynamic scattering potential, as a collection of point scatterers. 

     0, .j
j

F t F t     r r r r   (7.1) 

 Equation 1 is analogous to the earlier equation when describing static scattering 

under the Born approximation, now the particle positions change in time.  

 0F  is the scattering potential of a single particle and the summation is over all 

the particles. Variable t is due to fluctuations in particle positions and should not 

be confused with the reciprocal variable of optical frequency  .  
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 The scattering potential is still in the frequency domain,  ,F r ; we ignored the 

explicit   argument for simplicity. The dynamic scattering amplitude is given 

by the Fourier transform of Eq. 1, 

     
0, ,ji t

j

f t f e  qrq q   (7.2) 

 s i q k k   

 The dynamic signal originates in the superposition of scattered fields with 

fluctuating phases. To characterize these fluctuations, we calculate the temporal 

autocorrelation of the field scattered along sk , as 
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   is the first-order (field) correlation function, to be distinguished from the 

intensity correlation. In Eq. 3, the angular brackets denote temporal averaging, 

   
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2

1
T

T

f t f t dt
T



  . Assume particles move independently from one another, 

always true for a sparse distribution of particles. Under these circumstances, 

correlations between displacements of different particles vanish, 
    0, for .m ni t te m n     q r r   (7.4) 

 Combining Eqs. 3 and 4, we obtain 
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     2
0d q f q   is the differential cross section associated with a single particle 

and N is the total number of particles in the scattering volume.  

 We assumed that all terms in the summation are equal, i.e. all particles are 

governed by the same statistics. The temporal autocorrelation   is typically 

normalized to give 
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  (7.6) 

 The subscript 1 indicates that 1g  is a first-order correlation function. 
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7.2 Second-order correlation function. The Siegert relationship. 
 In practice, one only has access to the intensity scattered along direction sk . An 

intensity autocorrelation function is the measurable quantity, defined as 

 
   

 
2 2

,
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 
   (7.7) 

 where 

     
,

* ,m n
m n

I t U t U t    (7.8) 

 The angular brackets denote temporal average, and the double summation is 

over the ensemble of the scattered fields. Combining Eqs. 7 and 8, we obtain 

 
 
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 In Eq. 9, there are two different contributions:  

o for m n k l   , summation gives  2I t  

o for m=l and n=k, m≠n, we obtain terms of the form 

   1 1 *m n
m n

I g I g   . Because the particles scattered independently 

from one another, all the other terms vanish.  

 Thus, Eq. 9 becomes 

 
 

      22 2
2 12

1 ,q I t I t g
I t

     
 

(7.10) 

 which readily simplifies to 

    2
2 11g g     (7.11) 
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 Equation 11 connects the first-order and the second-order correlation functions 

and is known as the Siegert relationship. To evaluate the average  ie q r , with 

r  the displacement of a single particle, we need information regarding the 

physical phenomenon that generates fluctuations in the particle positions. This 

will provide the displacement probability density, to evaluate the average. 

 Let us assume that this probability density is  ,t r . The average of interest can 

be calculated as an ensemble average, 
     

 
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 The average is simply the 3D spatial Fourier transform of the probability density 

 ,t r . In the following section, we determine   and the average  i te qr  for 

diffusive particles, which is a situation widely encountered in practice. 
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7.3 Particles under Brownian motion. 

 For particles fluctuating at thermal equilibrium, undergoing Brownian motion, 

the probability density associated with a particle at position r and time t verifies 

the (homogeneous) diffusion equation 

   2 , , 0.D t t
t

   


r r   (7.13) 

 D is the diffusion coefficient, which for a spherical particle of radius a is given 

by the Stokes-Einstein equation 

6
Bk TD

a
   (7.14) 

 Bk  is the Boltzmann constant,  23 J1.38 10 KBk   , T is the absolute 

temperature (T=298K for room temperature),   the viscosity of the surrounding 

fluid ( 3 2
2

N s10 10 Pa sm      for water at room temperature).  
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 Taking the spatial Fourier transform of Eq. 13, we obtain 

   2,
,

t
Dq t
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   (7.15) 

 The first order differential equation in time immediately yields 

  2

, Dq tq t e    (7.16) 

 It follows from Eqs 6, 13 and 16 that the first order correlation function for 

Brownian particles has the form 
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 Equation 17 is commonly used in dynamic light scattering. It establishes, for 

measurements at a fixed scattering angle  , which corresponds to 4 sin 2q  


 , 

the field correlation function has a characteristic time 20
1

Dq  .  



11 
 

 The larger the scattering angle and the larger the diffusion coefficient, the 

shorter the correlation time 0 . For example, a particle of 1 m  diameter, 

suspended in water at room temperature, has a characteristic 0 2.5ms  . 

 Experimentally one has access directly to the second-order correlation function 

and, using the Siegert relationship, information about the diffusion coefficient 

can be obtained via 

  22
2 1 .Dqg e      (7.18) 



12 
 

 Figure 2 shows a qualitative description of the measured intensity and  2g   for 

two different correlation times. 
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Figure 7-2. DLS signals in two different conditions. 
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 The decay (correlation) time has the form 

0 2

2
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  (7.19) 

 Therefore    
0 0

A B   can be obtained in a variety of conditions A and B: 

A Ba a , A B  , A Bq q , A BT T  (all other parameters constant).  

 Sometimes, the power spectrum of intensity fluctuations is measured, 

     
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, , ,
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 (7.20) 

 Equation 20 states that the measured power spectrum is related to  2g   via a 

Fourier transform, which simply follows from the Wiener-Kintchin theorem.  



14 
 

 Thus, for diffusive particles, we expect a power spectrum of Lorentzian shape 

 
 

 

0

22

P F e




 

 
  

  



 

, (7.21) 

 

 With 
0

1   . Thus, the width of the power spectrum is equally informative. 


