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1. GROUNDWORK 

1.1. Superposition Principle. 
 This principle states that, for linear systems, the effects of a sum of stimuli 

equals the sum of the individual stimuli.  

 Linearity will be mathematically defined in section 1.2.; for now we will gain a 

physical intuition for what it means 

 Stimulus is quite general, it can refer to a force applied to a mass on a spring, a 

voltage applied to an LRC circuit, or an optical field impinging on a piece of 

tissue.  

 Effect can be anything from the displacement of the mass attached to the spring, 

the transport of charge through a wire, to the optical field scattered by the tissue.  

 The stimulus and effect are referred to as input and output of the system. By 
system we understand the mechanism that transforms the input into output; e.g. 
the mass-spring ensemble, LRC circuit, or the tissue in the example above. 
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 The consequence of the superposition principle is that the solution (output) to a 
complicated input can be obtained by solving a number of simpler problems, the 
results of which can be summed up in the end.  

 
Figure 1. The superposition principle. The response of the system (e.g. a piece of glass) to the sum of two fields is the 

sum of the output of each field. 
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 To find the response to the two fields through the system, we have two choices:  

o i) add the two inputs 1 2U U  and solve for the output;  

o ii) find the individual outputs and add them up, 1 2' 'U U .  

 The second option relies on superposition. The superposition principle allows us 

to decompose 1U  and 2U  into yet simpler signals, for which the solutions can be 

easily found.  
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1.1.1. The Green’s Function Method. 
 Green’s method of solving linear problems refers to “breaking down” the input 

signal into a succession of pulses that are infinitely thin, expressed by Dirac 

delta functions. We will deal with temporal responses, spatial responses, or a 

combination of the two.  

 
Figure 2. Temporal and spatial field input as distributions of impulses. 
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 Using a basic property of  -functions, the input in Fig. 2a can be written as 

      ' ' ',U t U t t t dt    (1.1) 
 defines  U t  as a summation over infinitely short pulses, each characterized by 

a position in time, 't t , and strength  'U t . 

 Exploiting the superposition principle, the response to temporal field distribution 

can be obtained by finding the response to each impulse and summing the 

results. This type of problem is useful in dealing with propagation of light pulses 

through various media. 

 The response to the 2D input  ,U x y  shown in Fig. 2b can be obtained by 

solving the problem for each impulse and adding the results. 

      , ' ', ' ' 'U x y U t x x y y dx dy     (1.2) 
 This type of input is encountered in problems related to imaging (works the 

same way in 1D and 3D as well). 
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 Green’s method is extremely powerful because solving linear problems with 

impulse input is typically an easy task. The response to such an impulse is called 

the Green’s function or the impulse response of the system. 
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1.1.2 Fourier Transform Method 
 Another way of decomposing an input is to break it down into sinusoidal 

signals. Essentially any curve can be reconstructed by summing up such sine 

waves, as illustrated for both temporal and spatial input signals in Fig. 3. 

 Solving a linear problem for a single sinusoid as input is a simple task. The 

output is the summation of all responses associated with these sinusoids. 

 The signals illustrated in Fig. 3 are real, the space and time input are 

reconstructed from a summation of cosine signals. The Fourier decomposition 

of a signal is the generalization of this concept whereby a signal which generally 

can be complex, is decomposed in terms of i te   (for time) or ie kr  (for space).  
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1.2. Linear Systems. 
 Most physical systems can be discussed in terms of the relationship between 

causes and their effects, i.e. input-output relationships.  

 Let us denote  f t  as the input and  g t  as the output of the system (Fig. 4). 

 
Figure 4. Input-output of a system. 

 The system provides a mathematical transformation, L, which transforms the 

input into output, 

    L f t g t     (1.3) 
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 To fully characterize the system, we must determine the output to all possible 

inputs, which is virtually impossible. If the system is linear, its complete 

characterization simplifies greatly, as discussed in the following section. 
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1.2.1 Linearity. 
 A system is linear if the response to a linear combination of inputs is the linear 

combination of the individual outputs, 
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(1.4) 

 1,2g  is the output of 1,2f , and 1,2a  are arbitrary constants. The transformation L is 

referred to as a linear operator (an operator is a function that operates on other 

functions). 

 Derive the main property associated with the input-output relationship of a 

linear system. First, we express an arbitrary input as a sum of impulses 
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 In Eq. 5, we expressed the integral as a Riemann summation, which emphasizes 

the connection with the linearity property. The response to input  f t  is 

      ' ' ',L f t f t L t t dt




          (1.6) 

 we assumed that the linearity property expressed in Eq. 4 holds for infinite 

summation.  

 Equation 6 indicates that the output to an arbitrary input is the response to an 

impulse,  'L t t   , averaged over the entire domain, using the input (f) as the 

weighting function.  

 The system is fully characterized by its impulse response, defined as 

    , ' ' .h t t L t t     (1.7) 
 h is not a single function, but a family of functions, one for each shift position t’. 



13 
 

1.2.2. Shift Invariance. 
 An important subclass of systems are characterized by shift invariance. For 

linear and shift invariant systems, the response to a shifted impulse is a shifted 

impulse response, 
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 (1.8) 

 The shape of the impulse response is independent of the position of the impulse.  

 This simplifies the problem and allows us to calculate explicitly the output, 

 g t , associated with an arbitrary input,  f t . Combining Eqs. 6 and 8, we 

obtain 

      ' ' '.g t f t h t t dt




    (1.9) 
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 Eq. 9 shows that the output for an arbitrary input signal is determined by a single 

system function , the impulse response  h t , or Green’s function. The integral 

operation between f and h is called convolution. 

 From Eq. 9 we see that if the entire input signal is shifted, say  f t  becomes 

 f t a , its output will be shifted by the same amount,  g t a  

    L f t a g t a      (1.10) 
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1.2.3. Causality. 
 In a causal system, the effect cannot precede its cause. The common 

understanding of causality refers to systems operating on temporal signals.  

 Let us consider an input signal  f t  and its output  g t . 

 
Figure 7. Input and output for a causal system. 
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 Mathematically, causality can be expressed as: 
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 (1.11) 

 The output can be written as 

      ' ' ',g t f t t h t dt




   (1.12) 

 where the impulse response,   0h t  , for 0t t . 
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 The concept of causality can be extended to other domains. Figure 7 shows an 

example where the system is the diffraction on an opaque screen. Thus, the 

screen transforms a spatial distribution of light,  f x , the input, into a spatial 

distribution of diffracted light (the output), at a certain distance, 0z . 
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 At distance 0z  behind the screen, there is a non-zero distribution of field,  g x , 

below the z-axis, i.e. for 0x  . Thus, although the input   0f x  , for 0x  , the 

output   0g x  , for 0x  . We can conclude that diffraction is spatially non-

causal, so to speak. 

 We will discuss in Section 1.4 (Complex analytic signals) a very important 

property of signals that vanish over a certain semi-infinite domain. 
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1.2.4. Stability. 
 A linear system is stable if the response to a bounded input,  f t , is a bounded 

output,  g t .  

 Mathematically, stability can be expressed as 

 
 
 

if 

then ,

f t b
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 (1.13) 

 b is finite and   is a constant independent of the input.  

 The constant   is a characteristic of the system whose meaning can be 

understood as follows. Let us express the modulus of the output via Eq. 11, 
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 Equation 13 proves that if the system is stable, then the impulse response is 

absolute-integrable. To show that stability is equivalent to  h t dt    , we 

need to prove that, conversely, if a   , there exists a bounded function that 

generates an unbounded response. Consider as input  

    
 

.
h t

f t
h t

  (1.15) 

 Clearly,   1f t  , yet its response diverges at the origin, 
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 (1.16) 

 We can conclude that a linear system is stable if and only if its impulse response 

is modulus-integrable. 
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1.3. The Fourier Transform in Optics 
 The Fourier transform and its properties are central to understanding many 

concepts. Physically, decomposing a signal into sinusoids, or complex 

exponentials of the form i te  , is motivated by the superposition principle, as 

discussed in Section 1.1.  

 For linear systems, obtaining the response for each sinusoidal and summing the 

responses is always more effective than solving the original problem of an 

arbitrary input. 
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1.3.1 Monochromatic Plane Waves. 
 There are two types of complex exponentials, one describing the temporal and 

the other the spatial light propagation.  

o i te   describes the temporal variation of a monochromatic (single 

frequency) of angular frequency  ,   rad/s  .  

o xik xe  describes the spatial variation of a plane wave (single direction) 

propagating along the x-axis, with a wavenumber xk ,   rad/mxk  .  

 The two exponents  have opposite signs, which is important and can be 

understood as follows.  

 Let us consider a monochromatic plane wave propagating along x and also 

oscillating in time.  
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Figure 8. Spatial and temporal variation of (the real part of) a monochromatic plane wave. 
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 An observer at a fixed spatial position 0x , “sees” the wave pass by with a 

temporal phase,  t t   . Another observer has the ability to freeze the wave 

in time 0t t  and “walk” by it along the positive x-axis; the spatial phase will 

have the opposite sign,   xx k x  .  

 An analogy that further illustrates this sign change is to consider a travelling 

train whose cars are counted by the two observers above. The first observer, 

from a fixed position 0x , sees the train passing by with its locomotive, then car 

1, car 2, etc. The second observer walks by the train that is now stationary, and 

sees the cars in reverse order towards the locomotive. 

 We will use the complex exponential i te   k r  to denote a monochromatic plane 

wave (the dot product k r  appears whenever the direction of propagation is not 

parallel to an axis of the coordinate system.  
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 An equivalent function is  i te   k r . Both functions are valid because physically 

we only can define phase differences and not absolute phases; then the sign of a 

phase shift is arbitrary. However the opposite sign relationship between the 

temporal and spatial phase shift must be reinforced, precisely because it is a 

relative relationship. 
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1.3.2. i t ie   k r  as Eigenfunction. 

 A fundamental property of linear systems is that the response to a complex 

exponential is also a complex exponential, 

   ,i t i t iL e e      kr k r  (1.17) 
   is a constant.  

 A function that maintains its shape upon transformation by the system operator 

L is called an eigenfunction, or normal function of the system. An eigenfunction 

is not affected by the system except for a multiplicative (scaling) constant. 

 Let us prove Eq. 16 for a system that only operates in time domain for 

simplicity. Let  g t  be the response of the system to i te  , 

    i tL e g t   (1.18) 
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 If we invoke the shift invariance property,    ' 'L f t t g t t     , and apply to 

the input i te  , we obtain 

    ' 'i t tL e g t t       (1.19) 

  ' 'i t t i t i te e e      , which for a fixed t’ is the original i te   multiplied by a 

constant. Applying the linearity property and combining with Eq. 19, we obtain 
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i t i t i tL e e e g t
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 (1.20) 

 Equation 20 holds for any t, thus, for t=0, Eq. 20 becomes 

     '' 0 .i tg t g e     (1.21) 
 Note that t’ is arbitrary in Eq. 21. If we denote the constant  0g  by  , we 

finally obtain ( 't t  ), 

   ,i t i tL e e     (1.22) 
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 This proves the temporal part of Eq. 16. Of course, the same proof applies to the 

spatial signal ie kr . 

 The fact that i t ie   kr  is an eigenfunction implies that a signal does not change 

frequency upon transformation by the linear system, i.e. in linear systems, the 

frequencies do not “mix.” This is why linear problems are solved most 

efficiently in the frequency domain. 

 In the following section we discuss the Fourier transform, which is the 

mathematical transformation that allows spatial and temporal signals to be 

expressed in their respective frequency domains. 
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1.3.3. The 1D Fourier Transform. 
 Consider a function of real variable t and with generally complex values, we 

define the integral 

    1 .
2

i tf f t e dt






   (1.23) 

 If the integral exists for every  , the function  f   defines the Fourier 

transform of  f t .  

 If we multiply both sides of Eq. 22 by 'i te   and integrate over  , we obtain 

what is called the inversion formula 

    1 .
2

i tf t f e d 







    (1.24) 

 where we used the property of the  -function, 

    ' 'i t te dt t t 


 



   (1.25) 
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 Equation 24 states that function f can be written as a superposition of complex 

exponentials, i te  , with the Fourier transform, f  (generally complex), assigning 

the proper amplitude and phase to each exponential.  

 For function f to have a Fourier transform, i.e. the integral in Eq. 23 to exist, the 

following conditions must be met: 

o a) f must be modulus-integrable, 

   .f t dt




   (1.26) 

o b) f has a finite number of discontinuities within any finite domain, 

o c) f has no infinite discontinuities. 

 Many functions of interest in optics do not satisfy condition a) and thus strictly 

speaking do not have a Fourier transform. Examples include the sinusoidal 

function, step function, and  -function.  
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 This type of function suffers from singularities, and can be further described by 

defining generalized Fourier transforms via  -functions 

 Any stationary signal (whose statistical properties, such as its average, do not 

change in time) violates condition a. 

 Spectral properties of stationary random processes have been studied in depth 

by Wiener [Wiener 1930], who developed a new theory called the generalized 

harmonic analysis to describe them.  

 Wiener showed that the power spectrum is well defined for signals that do 

not have a Fourier transform, as long as their autocorrelation function is 

well defined. Formally, optical fields should be described statistically, using 

the theory for random processes. 
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 It is common in practice to use Fourier transform to describe optical field 

distributions in both time and space. This apparent contradiction can be 

understood as follows.  

 In real situations of practical interest, we always deal with fields that are of 

finite support both temporally and spatially. For any signal  f t  that violates 

Eq. 26, we can define a truncated version, f , described as 

      ,  if ,2 2
      0,  rest

f t t
f t

    


 (1.27) 

 For most functions of interest, their truncated versions now do satisfy Eq. 26, 
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     (1.28) 

 We now can use the Fourier transform of f  rather than f.  
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 Let us consider    cosf t t . Thus, the Fourier transform of the respective 

truncated function is 
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(1.29) 

 We can now take the limit    and, invoking the properties of the  -

function, we obtain 
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 (1.30) 
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 This example demonstrates how the concept of Fourier transforms can be 

generalized using the singular function  . 

 In the following section we discuss some important theorems associated with the 

Fourier transform, which are essential in solving linear problems. 
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1.3.4. Properties of the Fourier Transform. 
 We have seen how the superposition principle allows us to decompose a general 

problem into a number of simpler problems. The Fourier transform is such a 

decomposition, which is commonly used to solve linear problems.  

 Let us review a set of properties (or theorems) associated with the Fourier 

transform, which are of great practical use. We present optics examples both for 

time and 1D spatial domain, where those mathematical theorems apply 

 We will use the symbol  to indicate a Fourier relationship, e.g. 

   f t f   .  

 Occasionally, the operator F will be used to denote the same, e.g. 

   F f t f    
 . 
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a) Linearity 
 The Fourier transform operator is linear, i.e. 

        1 1 2 2 1 1 2 2 .F a f t a f t a f a f     
  (1.31) 

 Equation 31 is easily proven by using the definition of the Fourier transform. 
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b) Shift property 
 Describes the frequency domain effect of shifting a function by a constant 

     0
0

i tf t t f e     (1.32) 
 This property applies equally well to a frequency shift 

     0
0

i tf f t e       (1.33) 
 Equations 32 and 33 have their analogs for the 1D spatial domain 
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  (1.34) 

 Note the sign difference between Eqs. 32 and 34a, as well as 33 and 34b. This is 

due to the monochromatic plane wave being described by xi t k xe    . 

 For a pair of identical pulses shifted in time by 0t ,  u t ,  0u t t , the spectrum 

measured by the spectrometer is modulated by  0cos t . The spectrometer 

detects the power spectrum, i.e.      0
2

0cosi tu u e t     . 
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 To illustrate the same property in the spatial domain, we anticipate that 

upon propagation in free space, a given input field,  u x , is Fourier 

transformed to  xu k , with 2 '
x

xk
z




 ,   the wavelength. We use this spatial 

Fourier transform property to describe the full analog to the time domain 

problem.  
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 Illuminating two apertures shifted by 0x , generated in the far field an intensity 

distribution modulated by  0cos xk x , i.e.      0
2

0cosxik x
x x xu k u k e k x    .  

 Here,  xu k  is the Fourier transform of one pulse. 
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c) Parseval’s theorem 
 This theorem, sometimes referred also by Rayleigh’s theorem, states the energy 

conservation, 
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 (1.35) 

 Equations 35a and b show that the total energy of the signal is the same, whether 

it is measured in time (space) or frequency domain. 
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d) Similarity theorem 
 This theorem establishes the effect that scaling one domain has on the Fourier 

domain, 
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 (1.36) 

 The similarity theorem provides an inductive relationship between a function 

and its Fourier transform, namely, the narrower the function the broader its 

Fourier transform and vice-versa. 
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e) Convolution theorem 

 This theorem provides an avenue for calculating integrals that describe the 

response of linear shift invariant systems. Generally, the convolution operation 

(on integral) of two functions f and g is defined as 
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 (1.37) 

 In the convolution operation function, g is flipped, shifted, and multiplied by f. 

The area under this product represents the convolution evaluated at the 

particular shift value. To evaluate the convolution over a certain domain, the 

procedure is repeated for each value of the shift. 
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 Note that f g  operates in the same space as f and g. The convolution theorem 

states that in the frequency domain the convolution operation becomes a 

product, 
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 (1.38) 

 Equations 33a-b reiterate that linear problems should be solved in the frequency 

domain, where the output of system can be calculated via simple multiplication. 

 We found in Section 1.2.1 that the output g of a linear system is the 

convolution between the input, f, the impulse response, h, 

  g t f h   (1.39) 
 Thus, the convolution theorem allows us to calculate the frequency domain 

response via a simple multiplication, 
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      g f h      (1.40) 
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 There are several other useful properties associated with the convolution 

operation, which can be easily proven 
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 (1.41) 



47 
 

f) Correlation Theorem 
 The correlation operation differs slightly from the convolution, in the sense that, 

under the integral, the argument of g has the opposite sign, 

 
   

   

' ' '

' ' '

t

x

f g f t g t t dt

f g f x g x x dx









   

   




 (1.42) 
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 In the frequency domain, the correlation function also becomes a product, 

between one Fourier transform and the conjugate of the other Fourier transform 
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 (1.43) 

 Note that if g is even Eqs. 43a and 43c are the same as 38a and c (the same is 

true for the other pairs of equations if g  is even). 
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2. THE 2D FOURIER TRANSFORM 

2.1. Definition 
 So far, we discussed 1D Fourier transformations. In studying imaging, the 

concept must be generalized to 2D and 3D functions. Diffraction and 2D image 

formation are treated efficiently via 2D Fourier transforms, while light scattering 

and tomographic reconstructions require 3D Fourier transforms. 

 A 2D function f can be reconstructed from its Fourier transform as 

( )( , ) ( , ) .x yi k x k y
x y x yf x y f k k e dk dk

 
  

 

     (1.44) 

 The inverse relationship reads 

( )( , ) ( , ) .x yi k x k yf x y f x y e dxdy
 

   

 

    (1.45) 
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 Thus ( , )x yf k k , a complex function, sets the amplitude and phase associated 

with the sinusoidal of frequency ( , )x yk kk . The contours of constant phase are 

( , )

const.
x yx y k x k y    


  (1.46) 

 Equation 3 can be expressed as 

( , )

const,

yx kkx y k x y
k k


 

    
 



 (1.47) 

 2 2
x yk k k  .  

 From Eq. 4, the direction of the contour makes an angle x

x

k
k

 with the x-axis and 

has a wavelength 2
k

   (Fig. 1).  
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a) b)

c)

kx 0

ky0

xx

y y

d)

 
Figure 1. a) Example of a 2D function f(x,y). b) The modulus of the Fourier transform (i.e. spectrum). c) The (real) 

Fourier component associated with the frequency (kx0,ky0) indicated by the square region in b. d) The (imaginary) Fourier 

component associated with the frequency (kx0,ky0) indicated by the square region in b. 

 Eq. 1 indicates that 2D function f (e.g. an image) is a superposition of waves of 

the type shown in Fig. 1c, with appropriate amplitude and phase for each 
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frequency ( , )x yk k . The Fourier transform ( , )x yf k k  assigns these amplitudes and 

phases for each frequency component ( , )x yk k . 

2.2. Two-dimensional convolution 

 The convolution operation between two 2D functions ( , )f x y  and ( , )g x y  is 

( ', ') ( ', ') ' 'xyf g f x y g x x y y dx dy
 

 

     (1.48) 

 g is rotated by 180° about the origin due to the change of sign in both x’ and y’, 

then displaced, and the products integrated over the plane.  

 One can encounter one-dimensional convolutions of 2D functions, 

( ', ') ( ', ') 'xf g f x y g x x y dx




     (1.49) 

 One example of such convolutions may occur when using cylindrical optics. 
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 The 2D cross-correlation integral of f and g is 

( ', ') ( ', ') ' '.xyf g f x y g x x y y dx dy
 

 

      (1.50) 

 Like in the 1D case, the only difference between convolution and correlation is 

in the sign of the argument of g, which establishes whether or not g is rotated 

around the origin. 

 If f is of the form 1 2( , ) ( ) ( )f x y f x f y  , then the following identity holds 

   
2

1 2

( , ) ( ) ( )
( ) ( ) ( ) ( )
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xy

f x y f x f y
f x y x f y 

 

   
 (1.51) 

 This way of expressing a function of separable variables is illustrated in Fig. 2 

for ( , ) sin sinx yf x y
a b

  . 
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xy




a)

b)

sin
x
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,a  1 sin
y
b

,b  2 sin
x
a

sin
y
b

sin
x
a
 y   x sin y

b

sin x
a

sin y
b

 
Figure 2. Expressing sin(x/a)sin(y/b) as a product (a) and as a convolution (b). 
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2.3. Theorems specific to two-dimensional functions 

 Shear theorem. If ( , )f x y  is sheared then its transform is sheared to the same 

degree in the perpendicular direction. 

( , ) ( , )x y xf x by y f k k bk     (1.52) 
 Proof: Let us change variables to 

u x by
v y
 


  (1.53) 
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 The Fourier transform of the sheared function is 

( )
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( )

( , ) ( , )
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(1.54) 
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 Rotation theorem If ( , )f x y  is rotated in the ( , )x y  plane then its Fourier 

transform is rotated in the ( , )x yk k  plane by the same angle (and the same sense). 

The rotated coordinates are 

cos sin
sin cos

cos sin
sin cos

u x
v y

x y
x y

 
 

 
 

    
    

    
 

   

  (1.55) 

 Thus the rotation theorem states 
( cos sin , sin cos )

( cos sin , sin cos )x y x y

f x y x y

f k k k k

   

   

 

      (1.56)  

 The Fourier transform of the rotated function is 
( )( , ) ( cos sin , sin cos ) x yi k x k y

x yf k k f x y x y e dxdy            (1.57) 
 

 Proof: Let us use a change of variables 
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cos sin
sin cos
cos sin

sin cos

u x y
v x y
x u v
y u v

 
 
 
 

 
 
 
  

  (1.58) 

 It follows that 

du du
dx dy

dudv dxdy
dv dv
dx dy

dxdy





  (1.59) 
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 Equation 11 becomes 
( cos sin ) ( sin cos )

( cos sin ) ( sin cos )

( , ) ( , )

( , )

( cos sin , sin cos ) ( . . .)

x y

x y x y

i k u v k u v
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 (1.60) 
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 Affine theorem. An affine transformation changes the vector ( , )x y  into 

( , )ax by c dx ey f    , i.e. it’s a linear transformation followed by a shift.  

 If an image ( , )f x y  suffers an affine transformation, points that were collinear 

remain collinear. Further, ratios of distances along a line do not change upon 

transformation. The following property exists for the Fourier transform of an 

affine-transformed function 
( ) ( )

( , ) ,
x yec bf k af cd k

i x y x yae bd
ek dk bk ak

f ax by c dx ey f e f
ae bd ae bd

  


   

         


 (1.61) 
 Proof: Left as exercise (hint: make use of the shift, similarity and shear 

theorems) 
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2.4. Generalization of 1D theorems 

 Central ordinate theorem 

( , ) (0,0)f x y dxdy f
 

 

     (1.62) 

 Shift theorem 
( )( , ) ( , )x yi k a k b

x yf x a y b e f k k         (1.63) 
 Similarity theorem 

1( , ) , yx kkf ax by f
ab a b

 
   

 
   (1.64) 

 Convolution theorem 

( , ) ( , ) ( , ) ( , )xy x y x yf x y g x y f k k g k k     (1.65) 
 Correlation theorem 

( , ) ( , ) ( , ) ( , )xy x y x yf x y g x y f k k g k k     (1.66) 



63 
 

 Modulation theorem 

1 1( , )cos ( , ) ( , )
2 2x y x yf x y bx f k b k f k b k     (1.67) 

 Parseval’s theorem 

22( , ) ( , )x y x yf x y dxdy F k k dk dk
   

   

    (1.68) 

 Differentiation properties 

( , ) ( ) ( ) ( , )
nm

m n
x y x yf x y ik ik f k k

x y
           

 (1.69) 

( , ) ( ) ( ) ( , )
nm

m n
x y x yf x y ik ik f k k

x y

                    

  (1.70) 
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 First moments 

( , ) (0,0)

( , ) (0,0)

x

y

fxf x y dxdy i
k

fyf x y dxdy i
k

 

 

 

 











 

 



   (1.71) 

 Center of gravity 

( , ) (0,0)

(0,0)( , )

( , ) (0,0)

(0,0)( , )

x

y

fxf x y dxdy
kx i

ff x y dxdy

fyf x y dxdy
k

y i
ff x y dxdy

 

 
 

 

 

 
 

 




 




 

 

 

 

 









 (1.72) 
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 Second moments 

 

2
2

2

2
2

2

2

2 2
2 2

2 2

( , ) (0,0)

( , ) (0,0)

( , ) (0,0)

( , ) (0,0) (0,0)

x

y

x y

x y

fx f x y dxdy
k

fy f x y dxdy
k

fxyf x y dxdy
k k

f fx y f x y dxdy
k k

 

 

 

 

 

 

 

 


 




 




 

 

  
    

   

 

 

 

 







 

 (1.73) 

 Equivalent width 

( , )
(0,0)

(0,0)
( , )x y x y

f x y dxdy
f

f
f k k dk dk

 

 
 

 


 

 




 (1.74) 
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Figure 3. Examples of 2D Fourier transforms (Bracewell). 
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2.5. The Hankel transform 

 Many optical systems exhibit circular symmetry.  

 Light emitted in 2D by a point source exhibits this symmetry. This problem 

simplifies significantly as the only non-trivial variable is the radial coordinate. 

Changing from Cartesian to polar coordinates, we obtain 

2 2

1

cos
sin

tan

x r
y r

r x y
y
x




 




 



  (1.75) 
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 Using the polar representation of the Fourier domain, we have 

2 2

1

cos '
sin '

' tan

x

y

x y

y

x

k k
k k

k k k

k
k




 




 



  (1.76) 

 From the rotation theorem, if a function is circularly symmetric, i.e. 

( , ) ( )f x y f r , then its Fourier transform is also circularly symmetric, 

( , ) ( )x yf k k f k . 

 The Fourier transform is 

 
2

cos( ')

0 0

2
cos

0 0

( , ) ( )

( ) .

x yi k x k y ikr

ikr

f x y e dxdy f r e rdrd

f r e d rdr


 








  
      

 


 

  

 
  

 

   

 
 (1.77) 
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 The integral in Eq. 34 does not depend on ' , as expected for circular symmetry. 

The integral over   defines the Bessel function of zeroth order and first kind, 
2

cos
0

0

1( )
2

ikrJ kr e d


 


     (1.78) 

 Thus, the resulting Fourier relationships become 

0
0

0
0

( ) 2 ( ) ( )

( ) 2 ( ) ( )

f k f r J kr rdr

f r f k J kr kdk




















  (1.79) 

 Equations 36a-b define a Hankel transform relationship (of zeroth order) 

between f and f . Thus, because of the circular symmetry, the 2D Fourier 

transfer reduces to a 1D integral, where the ie k r  kernel is replaced by 0 ( )J qr . 

Figure 4 illustrates the behavior of Bessel functions of orders 0,1,2n  . 
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Jn x 
J0 x 

J1 x 

J2 x 

x

 
Figure 4. Bessel functions of various orders. 

 

 Some useful identities for Bessel functions of first kind are 
2

cos

0

1

0

1( )
2

( ) ( )

( ) 1

ix in
n n

m m
m m

n

J x e e d
i

d x J x x J x
dx

J x dx


  







  

   







  (1.80) 
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 f r   f k  
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2re   
2

4
k

e 


 
Table 1. Common Hankel transform pairs 

 The Hankel transform satisfies some important theorems, which are analogous 

to those of 1D and 2D Fourier transforms. 

 Central ordinate theorem 

0
0

0

(0) 2 ( ) (0)

2 ( )

f f r J rdr

f r rdr

















 

  (1.81) 

 Shift theorem 

o The circular symmetry is destroyed upon a shift in origin; Hankel transform 

does not apply. 

 Similarity theorem 
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2

1( ) kf ar f
a a

   
 
   (1.82) 
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 Convolution theorem 

 

2

0 0

2 2 2

( ') ( ) ' ' ( ) ( )

' 2 'cos

f r g r r dr d f k g k

r r rr





 



 

  

   
  (1.83) 

 Parseval’s theorem 

 
22

2
0 0

1( ) ( )
2

f r rdr f k kdk


 

     (1.84) 

 Laplacian 
2

2 2
2

1 ( )d f dff k f k
dr r dr

        (1.85) 

 Second moment 

2
3

0

''(0)( )
4

fr f r rdr








  (1.86) 
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 Equivalent width 

 0

0

2 ( )

(0) 1 ( )
2

f r rdr
f

f
f k kdk















 (1.87) 
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3. THE 3D FOURIER TRANSFROM 
3.1. Definition 

 The Fourier pairs naturally extend to 3D functions as 

  ( )

( )

( , , ) , ,

( , , ) ( , , )

x y z

x y z

i k x k y k z
x y z x y z

i k x k y k z
x y z

f x y z f k k k e dk dk dk

f k k k f x y z e dxdydz

  
    

  

  
     

  

 

 

  

  




 (1.88) 

 Below we discuss the 3D Fourier transform in cylindrical and spherical 

coordinates. 
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3.2. Cylindrical coordinates 

 In this case, 
( , , ) ( , , )

( , , ) ( , ', ),x y z z

f x y z g r z

f k k k g k k







 
  (1.89) 

 where 

'

i

i
x y

x iy r e
k ik k e






  

  
  (1.90) 

 The functions g and g  are related by 

     

     

2
cos '

0 0
2

cos '

0 0

, , , ', '

, ', , ,

z

z

i k r k z
z z

i k r k z
z

g r z g k k e dk d dk

g k k g r z e drd dz


 


 

  

  





 
    

 


 
     




 

 

  

  




 (1.91) 
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 Under circular symmetry, i.e. f independent of  , and f  independent of ' , 

   
   

, , ,

, , ,x y z z

f x y z h r z

f k k k h k k



    (1.92) 

 Equations 48a-b become 

   

   

0
0

0
0

1( , ) ,
2

( , ) 2 ,

z

z

ik z
z z

ik z
z

h r z h k k J k r e k dk dk

h k k h r z J k r e rdrdz





 


   


 
 

 


    

    

 

 




 (1.93) 

 The integral in Eq. 50a represents a 1D Fourier transform along z of the Hankel 

transform with respect to r.  

 If the problem has cylindrical symmetry, we have 

   
      

, ,

, ,x y z z

f x y z p r

p k k k p k k



 
  (1.94) 
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 The Fourier transform simplifies to 

     

     

0
0

0
0

1
2

2

p r p k J k r k dk

p k p r J k r rdr







   



 

 

 








  (1.95)  

 This transformation is important for studying paraxial propagation of light, 

where the z-axis propagation only contributes a phase shift kz.  
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3.3. Spherical coordinates 

 In spherical coordinates, 

   
 

, , , ,

, , ( , ', '),x y z

f x y z g r

f k k k g k

 

 



 
 (1.96) 

 The change of coordinates follows 
sin cos , sin sin , cos
sin 'cos ', sin 'sin ', cos 'x y z

x r y r z r
k k k k k k

    
    

  
  

(1.97) 

 The Fourier integrals become 

     

     

2
cos cos ' sin sin 'cos ' 2

0 0 0
2

cos cos ' sin sin 'cos ' 2

0 0 0

, , , ', ' sin ' ' '

, ', ' , , sin

i

i

g r g k e k dkd d

g k g r e r drd d

 
     

 
     

      

      


   


    

  

  

  

  





 (1.98) 
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 Under circular symmetry, i.e. ( , , )f x y z  is independent of  , we have 

   
   

, , ,

, , , 'x y z

f x y z g r

f k k k g k







 
  (1.99) 

 The Fourier transforms are 

     

     

cos cos ' 2
0

0 0

cos cos ' 2
0

0 0

, 2 , ' sin sin ' sin ' '

, ' 2 , sin sin ' sin

ikr

ikr

g r g k J kr e r drd

g k g r J kr e r drd


 


 

      

      






  

  

 

 




 (1.100) 

 With spherical symmetry, we have 

   
   

, ,

, ,x y z

f x y z h r

f k k k h k



    (1.101) 
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 In this case, the integrals reduce to 

     

     

2
2

0

2

0

1 sinc
2

4 sinc

h r h k kr k dk

h k h r kr r dr




















  (1.102) 

 A few examples of 3D Fourier pairs are shown in Table 2. 

 , ,f x y z   , ,x y zf k k k  

 , ,x a y b z c      x y zi k a k b k ce       

 , ,x y z  

(cube)  3
1 sin sin sin

2 2 22
yx z

kk k
  

         
    

 

 ,x y  

(bar)  
 2

1 sin sin
2 22

yx
z

kk k
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 x  

(slab) 
   1 sin

2 2
x

y z
k k k 

 
    
 

 

2
r  

 
 (ball) 

3

sin cos
2

k k k
k

   

   2 2x y z    

(disk)  

2 2

1

3 2 2

21 sin
22

y z

x

y z

k k
J

k
k k
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