Quantitative Phase Imaging of Cells and Tissues

by Gabriel Popescu


Popescu G. (2011) Quantitative phase imaging of cells and tissues (McGraw-Hill, New York) p 385.

About the Author
Foreword by Emil Wolf

Chapter 1. Introduction
1.1. Light microscopy
1.2. Quantitative phase imaging (QPI)
1.3. Multimodal investigation based on QPI
1.4. Nanoscale and three-dimensional imaging

Chapter 2.Groundwork
2.1. Light propagation in free space
      2.1.1. 1D propagation: plane waves
      2.1.2. 3D propagation: spherical waves
2.2. Fresnel approximation of wave propagation
2.3. Fourier transform properties of free space
2.4. Fourier transform properties of lenses
2.5. Born approximation of light scattering in inhomogeneous media
2.6. Scattering by single particles.
2.7. Particles under the Born approximation
      2.7.1. Spherical particles
      2.7.2. Cubical particles
      2.7.3. Cylindrical particles
2.8. Ensembles of particles within the Born approximation.
2.9. Mie scattering

Chapter3. Spatiotemporal field correlations
3.1. Spatiotemporal correlation function. Coherence volume.
3.2. Spatial correlations of monochromatic light
      3.2.1. Cross-spectral density
      3.2.2. Spatial power spectrum
      3.2.3. Spatial filtering
3.3. Temporal correlations of plane waves
      3.3.1. Temporal autocorrelation function
      3.3.2. Optical power spectrum
      3.3.3. Spectral filtering

Chapter 4. Image characteristics
4.1. Imaging as linear operation
4.2. Resolution
4.3. Signal to noise ratio (SNR)
4.4. Contrast and contrast to noise ratio (CNR)
4.5. Image filtering

Chapter 5. Light microscopy
5.1. Abbe’s theory of imaging
5.2. Imaging of phase objects
5.3. Zernike’s phase contrast microscopy

Chapter6. Holography
6.1. Gabor (in-line) holography
6.2. Leith and Upatnieks (off-axis) holography
6.3. Nonlinear (real time) holography
6.4. Digital holography
      6.4.1. Digital hologram writing
      6.4.2. Digital hologram reading

Chapter 7. Point scanning QPI methods
7.1. Low-coherence interferometry (LCI)
7.2. Dispersion effects
7.3. Time-domain optical coherence tomography (OCT)
      7.3.1. Depth-resolution in OCT
      7.3.2. Contrast in OCT
7.4. Fourier-domain and swept source OCT
7.5. Qualitative phase-sensitive methods
      7.5.1. Differential phase contrast OCT
      7.5.2. Interferometric phase dispersion microscopy
7.6.Quantitative methods
      7.6.1. Phase-referenced interferometry
      7.6.2. Spectral domain QPI
7.7. Further developments

Chapter 8. Principles of full-field QPI
8.1. Interferometric imaging
8.2. Temporal phase modulation: phase shifting interferometry
8.3. Spatial phase modulation: off-axis interferometry
8.4. Phase unwrapping
8.5. Figures of merit in QPI
      8.5.1. Temporal sampling: acquisition rate
      8.5.2. Spatial sampling: transverse resolution
      8.5.3. Temporal stability: temporal phase sensitivity
      8.5.4. Spatial uniformity: spatial phase sensitivity
8.6. Summary of QPI approaches and figures of merit

Chapter 9. Off-axis methods
9.1. Digital holographic microscopy (DHM)
      9.1.1. Principle
      9.1.2. Further developments
      9.1.3. Biological applications
   Cell imaging
   Cell growth
9.2. Hilbert phase microscopy (HPM)
      9.2.1. Principle
      9.2.2. Further developments
   Actively stabilized HPM (s-HPM)
   HPM and confocal reflectance microscopy
      9.2.3. Biological applications
   Red blood cell morphology
   Cell refractometry in microfluidic channels
   Red blood cell membrane fluctuations
   Tissue refractometry

Chapter 10. Phase-shifting methods
10.1. Digitally recorded interference microscopy with automatic phase shifting (DRIMAPS)
      10.1.1. Principle
      10.1.2. Further developments
      10.1.3. Biological applications
10.2. Optical quadrature microscopy (OQM)
      10.2.1. Principle
      10.2.2. Further developments
      10.2.3. Biological applications

Chapter 11. Common-path methods
11.1. Fourier phase microscopy (FPM)
      11.1.1. Principle
      11.1.2. Further developments
      11.1.3. Biological applications
   Slow fluctuations in red blood cell membranes
   Cell growth
   Cell motility
11.2. Diffraction phase microscopy (DPM)
      11.2.1. Principle
      11.2.2. Further developments
   Diffraction phase and fluorescence microscopy (DPF)
   Confocal diffraction phase microscopy
      11.2.3. Biological applications
   Fresnel particle tracking using DPM
   Red blood cell mechanics
   Imaging malaria-infected RBCs

Chapter 12. White light methods
12.1. QPI using the transport of intensity equation
      12.1.1. Principle
      12.1.2. Further developments
      12.1.3. Biological applications
12.2. Spatial light interference microscopy (SLIM)
      12.2.1. Principle
      12.2.2. Further developments
   SLIM-fluorescence multimodal capability
   Computational imaging
      12.2.3. Biological applications
   Cell dynamics
   Cell growth

Chapter 13. Fourier transform light scattering (FTLS)
13.1. Principle
      13.1.1. Relevance of light scattering methods
      13.1.2. FTLS
13.2. Further developments
13.3. Biological applications
      13.3.1. Elastic light scattering of tissues
      13.3.2. Elastic light scattering of cells
      13.3.3. Dynamic light scattering of cell membranes
      13.3.4. Dynamic light scattering of cell cytoskeleton

Chapter 14.Current trends in methods
14.1. Tomography via QPI
      14.1.1. Computed tomography via digital holographic microscopy (DHM)
      14.1.2. Diffraction tomography via spatial light interference microscopy (SLIM)
14.2. Spectroscopic QPI
      14.2.1. Spectroscopic diffraction phase microscopy
      14.2.2. Instantaneous spatial light interference microscopy (iSLIM)

Chapter 15. Current trends in applications
15.1. Cell dynamics
      15.1.1. Background and motivation
      15.1.2. Active membrane fluctuations
      15.1.3. Intracellular mass transport
   Measurements on Brownian systems
   Measurements on live cells
15.2. Cell growth
      15.2.1. Background and motivation
      15.2.2. Cell cycle-resolved cell growth
15.3. Tissue optics
      15.3.1. Background and motivation
      15.3.2. Scattering- phase theorem
   Proof of the ls-f relationship
   Proof of the g-f relationship
      15.3.3. Tissue scattering properties from organelle to organ scale
15.4. Clinical applications
      15.4.1. Background and motivation
      15.4.2. Blood screening
      15.4.3. Label-free tissue diagnosis

A. Complex analytic signals
B. The two-dimensional and three-dimensional Fourier transform
C. QPI artwork