Spring 2019

ECE 398 - Fourier Optics

Prof. Gabriel Popescu

 

Textbook: G. Popescu, Principles of Biophotonics, Volume 1, Linear systems and the Fourier transform in Optics (IOP Publishing, 2018).

Schedule: 12:30-1:50 T-R, 3015 ECEB

Office Hours: Thursdays 2-3PM, 4055 Beckman

cid:B37FA36C-413A-43FD-92EE-19B28E43BD6D

#

Day

Date

Topic

Supporting Material

Homework

Links

28

T

Jan 15

Introduction: Brief history of Optics

 

1D Fourier Transforms (ECE 460)

27

R

Jan 17

Superposition principle: Green’s and Fourier’s methods

Chapter 1

Homework 1

ImageJ

26

T

Jan 22

Linear systems: linearity, shift-invariance

Chapter 2

25

R

Jan 24

Linear systems: causality, stability

 

Homework 2

 

24

T

Jan 29

Spatial and temporal frequencies

Chapter 3

23

R

Jan 31

1D Fourier transform: definition, conditions, significance of spectral phase

Chapter 4

22

T

Feb 5

1D Fourier transform: properties of 1D FT

 

21

R

Feb 7

1D Fourier transform: common 1D FT pairs

 

Homework 3

20

T

Feb 12

2D Fourier transform: definition, conditions, significance of spectral phase

Chapter 5

19

R

Feb 14

2D Fourier transform: properties and common 2D FT pairs

 

Homework 4

18

T

Feb 19

3D Fourier transform: definition, conditions, significance of spectral phase

Chapter 6

 

17

R

Feb 21

3D Fourier transform: properties and common 3D FT pairs

 

Homework 5

 

16

T

Feb 26

Midterm 1

 

15

R

Feb 28

The uncertainty relation: spatial and temporal spread of optical fields

Chapter 8

14

T

Mar 5

The uncertainty relation: effects of chirp on pulses, effects of aberrations on spatial resolution

 

Homework 6

13

R

Mar 7

Light emission: Radiometric and photometric properties of light

Vol. 2

 

12

T

Mar 12

Light emission: fluorescence

 

 

R

Mar 14

Light emission: black body radiation

 

Homework 7

 

 

T

Mar 19

Spring Break

 

 

 

R

Mar 21

Spring Break

 

11

T

Mar 26

Light emission: LASER

 

Homework 8

 

10

R

Mar 28

Midterm 2

 

 

9

T

Apr 02

Spatial wave propagation: impulse response

Vol. 3

8

R

Apr 04

Spatial wave propagation: diffraction of scalar fields

 

7

T

Apr 9

Spatial wave propagation: Fresnel approximation

 

Homework 9

 

6

R

Apr 11

Spatial wave propagation: Fraunhofer approximation

 

 

5

T

Apr 16

Spatial wave propagation: Fourier properties of lenses

 

Homework 10

 

4

R

Apr 18

Temporal wave propagation: impulse response

 

 

3

T

Apr 23

Temporal wave propagation: propagation of pulses in dispersive media

 

2

R

Apr 25

Temporal wave propagation: phase group and signal velocities

 

Homework 11

1

T

Apr 30

Review

 

 

 

R

May 2

Reading Day

 

 

 

TBA

Final Exam

ROOM TBA

 

 

Grading formula: Midterm 20%; Midterm 2 20%, Final exam 30%; Homework - 20%; Class participation/ quizzes - 10% .

 

REFERENCES

1.           A. Papoulis The Fourier integral and its applications (McGraw-Hill, New York,, 1962).

2.           R. N. Bracewell The Fourier transform and its applications (McGraw Hill, Boston, 2000).

3.           J. W. Goodman Introduction to Fourier optics (McGraw-Hill, New York, 1996).

4.           M. Born and E. Wolf Principles of optics : electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge ; New York, 1999).