Nanobiophotonics

Gabriel Popescu, Editor

Contents

Popescu G., Ed. (2010) Nanobiophotonics (McGraw-Hill, New York), p 432.

Cover
Contents
Contributors
Preface
About the Editor

Part I. Introduction
Chapter 1. Biology of the Cancer Cell -Marina Marjanovic and Krishnarao Tangella
1.1. Cell – A Basic Unit of Life
1.2. Cell Cycle
1.3. Control of the Cell Cycle
1.4. Biology of a Cancer Cell
1.5. Molecular Biology of a Cancer Cell
1.6. Summary
Suggested Reading

Chapter 2. Review of Electromagnetic Fields -Gabriel Popescu
2.1. Maxwell’s Equations
      2.1.1. Maxwell’s Equations in the Space-Time Representation
      2.1.2. Boundary Conditions
      2.1.3. Maxwell’s Equations in the Space-Frequency Representation (r,ω)
      2.1.4. The Helmholtz Equation
      2.1.5. Maxwell’s Equations in the (k,ω) Representation
      2.1.6. Phase, Group, and Energy Velocity
      2.1.7. The Fresnel Equations
      2.1.8. Total Internal Reflection
      2.1.9. Transmission at the Brewster Angle
2.2. The Lorentz Model of Light-Matter Interaction
      2.2.1. From Microscopic to Macroscopic Response
      2.2.2. Response below the Resonance ω<<ω0
      2.2.3. Response at the Resonance ω≈ω0
      2.2.4. Response above the Resonance ω>>ω0
2.3. Drude Model of Light-Metals Interaction
Suggested Reading

Chapter 3. Introduction to Nanophotonics -Logan Liu
3.1. Overview
3.2. Foundation of Nanophotonics
3.3. Quantum Confinement in Nanophotonics
3.4. Plasmonics
      3.4.1. Optical Field Enhancement and Concentration
3.5. Nanophotonic Characterization with Near-Field Optics
3.6. Computation and Simulation in Nanophotonics
      3.6.1. Mie Scattering Theory
      3.6.2. Maxwell Equations
      3.6.3. Finite Element Frequency-Domain Nanophotonic Simulation
      3.6.4. Finite Difference Time Domain (FDTD)
References

Part II. Review of Methods
Chapter 4. Tissue Pathology: A Clinical Perspective -Krishnarao Tangella and Marina Marjanovic
4.1. Introduction
4.2. Tissue Preparation
      4.2.1. Accessioning the Specimen
      4.2.2. Grossing in the Specimen
      4.2.3. Frozen Sections
      4.2.4. Specimen in Tissue Processor
      4.2.5. Embedding of Tissue
      4.2.6. Microtome Sectioning of Paraffin Blocks
      4.2.7. Tissue Staining
      4.2.8. Cytology Specimens
      4.2.9. Special Stains
4.3. Pathology Report
4.4. Prognostic and Predictive Markers in Pathology
4.5. Opportunities for Biophotonics at the Nanoscale
4.6. Summary
Acknowledgments
References

Chapter 5. Lignt Scattering in Inhomogeneous Media -Gabriel Popescu
5.1. Elastic (Static) Light Scattering
      5.1.1. Scattering Properties of One Dielectric Particle
      5.1.2. Rayleigh Particles
      5.1.3. Mie Theory
      5.1.4. Single-Scattering Approximation for a Volume Distribution of Dielectric Particles
5.2. Quasi-Elastic (Dynamic) Light Scattering
5.3. Multiple Scattering
      5.3.1. Elements of Radiative Transport Theory
      5.3.2. Diffusion Approximation of the Transport Theory
      5.3.3. Diffusive Wave Spectroscopy
References

Chapter 6. Theory of Second-Harmonic Generation -Raghu Ambekar Ramachandra Rao and Kimani C. Toussaint, Jr.
6.1. Introduction
6.2. Nonlinear Microscopy
6.3. Theory of Second-Harmonic Generation (Electromagnetics Picture)
      6.3.1. Nonlinear Wave Equation
      6.3.2. Second-Order Nonlinear Polarization
      6.3.3. Determination of Second-Harmonic Generation Intensity
      6.3.4. Nonperfect Phase Matching
      6.3.5. Noncentrosymmetry
      6.3.6. Quasi-Phase Matching
      6.3.7. Phase-Matching Bandwidth
6.4. Theory on Second-Harmonic Generation (Dipole Picture)
      6.4.1. Directionality
      6.4.2. Backward Second-Harmonic Generation
      6.4.3. Effect of Focusing
      6.4.4. Phase Matching in Biological Tissues
6.5. Experimental Configuration
6.6. Practical Considerations
      6.6.1. Distinguishing SHG
      6.6.2. Resolution and Penetration Depth
      6.6.3. Power Limitations
      6.6.4. Advantages and Disadvantages of SHG
6.7. Conclusion
Acknowledgments
References

Chapter 7. Vision Restoration in the Nanobiophotonic Era -S. Sayegh
7.1. Introduction
7.2. Lignt at Multiple Levels
      7.2.1. Ray Optics, Wave Optics, and Quantum Optics
7.3. Vision
      7.3.1. Visual Acuity
      7.3.2. Definition(s) of Blindness (Legally Blind and Legally Drive)
      7.3.3. Causes of Blindness: What It Takes to See…and Not
      7.3.4. Brief Introduction to the Anatomy of the Eye
7.4. The Size of Things
      7.4.1. The Eye
      7.4.2. Cornea
      7.4.3. Example: Lens
      7.4.4. Example: Retina
      7.4.5. Optic Nerve
7.5 Failure of Visual Requirements Resulting in Blindness
      7.5.1. Failure of Transparency
      7.5.2. Failure of Bending or Focusing
      7.5.3. Failure of Detection
      7.5.4. Failure of Conduction
      7.5.5. Failure of Processing
7.6. Diagnostic Tools
7.7. Therapeutic Tools
      7.7.1. Therapeutic Tools (Optical)
      7.7.2. Therapeutic Tools (Medical)
      7.7.3. Therapeutic Tools (Surgical)
7.8. Summary
Suggested Reading

Chapter 8. Optical Low-Coherence Interferometric Techniques for Applications in Nanomedicine -Utkarsh Sharma and Stephen A. Boppart
8.1. Introduction
      8.1.1. Origin and Evolution of OCT Technology
      8.1.2. Applications in Medicine
      8.1.3. Applications in Nanomedicine
8.2. Basic Theoretical Aspects of Low-Coherence Interferometry
      8.2.1. OCT Theory
      8.2.2. Spectral-Domain OCT
      8.2.3. Axial and Lateral Resolution
      8.2.4. SNR, Noise, and Sensitivity in OCT Systems
8.3. Functional Extensions of OCT and Other LCI-Based Techniques for Applications in Nanomedicine
      8.3.1. Gole nanoshells and Nanostructures as Contrast and Therapeutic Agents
      8.3.2. Spectroscopic OCT
      8.3.3. Magnetomotive OCT
      8.3.4. Ultrahigh-Resolution OCT for Subcellular Imaging
      8.3.5. Phase-Sensitive LCI Techniques for Monitoring Cellular Dynamics
      8.3.6. Polarization-Sensitive OCT
      8.3.7. Molecular-Specific LCI-Based Techniques: Pump-Probe OCT and Nonlinear Interferometric Vibrational Imaging
8.4. Conclusion
Acknowledgments
References

Chapter 9. Plasmonics and Metamaterials -Kin Hung Fung and Nicholas X. Fang
9.1. Introduction
9.2. Surface Plasmon
9.3. Design of Metamaterials
      9.3.1. Concept of Effective Medium
      9.3.2. Effective Electric Permittivity (εeff)
      9.3.3. Effective Magnetic Permeability (μeff)
      9.3.4. Double Negativity
9.4. Imaging and Lithography: Breaking the Diffraction Limit
      9.4.1. Thin-Film Superlens
      9.4.2. Hyperlens
9.5. Outlook
9.6. Conclusion
References

Part III. Current Research Areas
Chapter 10. Infrared Spectroscopic Imaging: An Integrative Approach to Pathology -Michael J. Walsh and Rohit Bhargava
10.1. Introduction
      10.1.1. Cancer Pathology
      10.1.2. Current Practices in Pathology
      10.1.3. Molecular Pathology
10.2. FTIR Spectroscopy
      10.2.1. Point Spectroscopy and Imaging
      10.2.2. FTIR and Molecular Pathology
      10.2.3. Comparison with Other (Spectral) Imaging Techniques
      10.2.4. Progress in Instrumentation
10.3. Applications of FTIR in Biomedical Research
      10.3.1. 2D Cell Culture
      10.3.2. 3D Tissue Culture
      10.3.3. Clinical Applications of FTIR
10.4. Translation of FTIR Imaging into Routine Use in Routine Clinical Pathology
      10.4.1. Clinical Considerations
      10.4.2. Spectroscopic Considerations
      10.4.3. Translation of FTIR Imaging to Clinic
10.5. Discussion
References

Chapter 11. Scattering, Absorbing, and Modulating Nanoprobes for Coherence Imaging -Renu John and Stephen A. Boppart
11.1. Introduction
      11.1.1. Molecular Imaging Techniques
      11.1.2. Molecular Contrast Agents
11.2. Coherence Imaging Probes
      11.2.1. Scattering Probes
      11.2.2. Dynamic Probes
      11.2.3. Absorbing Probes
      11.2.4. Surface Plasmon Resonant Probes
11.3. Conclusions and Future Perspectives
Acknowledgments
References

Chapter 12. Second-Harmonic Generation Imaging of Collagen-Based Systems -Monal R. Mehta, Raghu Ambekar Ramachandra Rao, and Kimani C. Toussaint, Jr.
12.1. Introduction
12.2. Approaches to Obtaining Quantitative Information from Second-Harmonic Generation Images
      12.2.1. The Ratio of Forward-to-Backward Second-Harmonic Generation Intensity
      12.2.2. Distribution of Lengths in Structures
      12.2.3. χ(2) Tensor Imaging
      12.2.4. Fourier-Transform Second-Harmonic Generation Microscopy
12.3. Quantitative Comparison of Forward and Backward Second-Harmonic Generation Images
      12.3.1. Preferred Orientation
      12.3.2. Peaks in Magnitude Spectrum
12.4. Conclusion
Acknowledgments
References

Chapter 13. Plasmonics: Toward a New Paradigm for Light Manipulation at the Nanoscale -Maxim Sukharev
13.1. Introduction
13.2. Computational Nano-Optics
13.3. Phase-Polarization Control Scheme
13.4. Plasmon-Driven Light Trapping and Guidance by 1D Arrays of Nanoparticles
13.5. Optics of Metal Nanoparticles with No Center of Inversion Symmetry
13.6. Genetic Algorithm Design of Advanced Plasmonic Materials for Nano-Optics
13.7. Perfect Coupling of Light to Plasmonic Diffraction Gratings
13.8. Conclusion
References

Chapter 14. Plasmon Resonance Energy Transfer -Logan Liu
14.1. Introduction
14.2. PRET-Enabled Biomolecular Absorption Spectroscopy
      14.2.1. PRET Imaging of Nanoplasmonic Particles in Living Cells
      14.2.2. Whole-Field Plasmon Resonance Imaging
14.3. Experimental Procedures
      14.3.1. Preparation of Cyt c Conjugated Gold Nanoparticles on a Glass Slide
      14.3.2. Scattering Imaging and Spectroscopy of Single Gold Nanoparticles
      14.3.3. Finite Element Simulation of Electromagnetic Energy Coupling in PRET
14.4. Conclusions
References

Chapter 15. Erythrocyte Nanoscale Flickering: A Marker for Disease -Catherine A. Best
15.1. Introduction to Hematology
      15.1.1. Standard Blood Testing
      15.1.2. RBC Morphology Assay
      15.1.3. Cell Deformability Assay
15.2. Physical Properties of RBC Membranes
      15.2.1. RBC Membrane Fluctuations
      15.2.2. Existing Techniques for Measuring RBC Membrane Fluctuations
      15.2.3. Quantitative Phase Imaging
15.3. Nanoscale Characterization of RBC Dynamics
      15.3.1. Static (Spatial) Behavior of Membrane Displacements
      15.3.2. Dynamic Behavior of Membrane Displacements: Spatial and Temporal Correlations
      15.3.3. Effects of Adenosine Triphosphate (ATP)
      15.3.4. Effects of Osmotic Pressure on Red Blood Cell Mechanics
15.4. Clinical Relevance of RBC Membrane Fluctuations: Malaria as the First Example
Acknowledgments
References

Chapter 16. Superresolution Far-Field Fluorescence Microscopy -Manuel F. Juette, Travis J. Gould, and Joerg Bewersdorf
16.1. Introduction and Historical Perspective
16.2. Fundamentals of Superresolution Microscopy
      16.2.1. PSF Engineering
      16.2.2. Localization-Based Microscopy
      16.2.3. Fluorescent Probes
      16.2.4. The Optical Transfer Function (OTF)
16.3. Applications
      16.3.1. Multicolor Imaging
      16.3.2. Temporal Resolution and Live-Cell Imaging
      16.3.3. Superresolution in the Axial Direction
16.4. Discussion
Acknowledgments
References

Index