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Abstract: Light diffraction at an aperture is a basic problem that has generated a tremendous
amount of interest in optics. Some of the most significant diffraction results are the Fresnel-
Kirchhoff and Rayleigh-Sommerfeld formulas. These theories are based on solving the wave
equation using Green’s theorem and result in slightly different expressions depending on the
particular boundary conditions employed. In this paper, we show that the diffraction by a thin
screen, which includes apertures, gratings, transparencies etc, can be treated more generally as a
particular case of scattering. Furthermore, applying the first order Born approximation to 2D
objects, we obtain a general diffraction formula, without angular approximations. Finally, our
result, which contains no obliquity factor, is consistent with the 3D theory of scattering. We
discuss several common approximations and place our results in the context of existing theories.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

According to Born and Wolf, “Diffraction problems are amongst the most difficult ones
encountered in optics” [1]. During a period when Newton’s corpuscular theory of light [2] was
generally accepted, Huygens’ incredible intuition provided new insights into the propagation
of optical fields [3]. Later on, as Young [4] and Fresnel [5] cemented the wave theory of light,
Huygens’ principle was placed in a more rigorous mathematical formalism (for a collections
of memoirs by Huygens, Young, and Fresnel, one can consult Ref. [6]). Informative reviews
in historical context of the scalar diffraction theory can be found in [1] (Chap. VII) and [7]
(Chap. 3).

With the advance of quantitative phase imaging (QPI) [8,9], an imaging approach that relies on
the refractive index as intrinsic contrast marker, the fields of imaging and angular scattering have
been placed in unified physical context as two equivalent descriptions of the same light-tissue
interaction [10]. The link between these descriptions is the phase of the optical field, which allows
the retrieval of the complex field and numerically express it in either the spatial or wavevector
domains. Light scattering models have been paired with phase measurements to reconstruct the
3D structure of cells and tissues, i.e., to solve inverse problems [11–18]. This unified approach
of imaging and scattering has been extended to dynamic mass transport in live cells [19–21].

Following this approach of unification of light scattering and imaging, we now propose to
extend this common treatment of light scattering and diffraction. Presentation of diffraction as
a special case of scattering under the Born approximation can help us solve inverse problems
efficiently in the frequency domain. We derive the general formula for the diffracted field
generated by an arbitrary incident field at a screen, starting with the inhomogeneous wave
equation. As a particular case, we solve the diffraction problem of the spherical wave at an
aperture and we express the field without angular approximations. The approach presented here
is novel and significant in three major ways, as follows. First, to our knowledge, this is the first
time that the diffraction formula was derived from the Born approximation. The closest work to
this study is Ref. [22]. which introduces obliquity factor modifications to unify 2D diffraction
and 3D scattering problems. However, our mathematical derivation method is different. Second,
as described by Goodman (Chapter 3 in [7]), the Rayleigh -Sommerfeld and Kirchhoff theories
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suffer from inconsistencies in the boundary conditions, which result in three different solutions.
Our derivation, with no angular approximations, settles this problem and yields a unique solution,
with no “obliquity” factor. Third, our work also solves the inconsistency between the Born
approximation solutions (see, e.g., Chapter XIII in [1], with no obliquity factor, and diffraction
formulas, which contain this factor (Chapter 3 in [7])) as there is no obliquity factor in the 3D
scattering solution.

We start with the inhomogeneous Helmholtz equation,

[∇2 + β2(r)]U(r;ω) = 0, (1)

where, β(r) = n(r)ω/c is the wavenumber, with n the inhomogeneous refractive index. Equa-
tion (1) can be separated into a homogenous and source term, namely

(∇2 + β2
0)U(r;ω) = −[n2(r) − 1]β2

0U(r;ω). (2)

where, β0 = ω/c, is the free space wavenumber.
Figure 1(a) shows the diffraction geometry. We consider the incident field, U0, impinging

on a transparent screen, infinitesimally thin, such that the refractive index distribution can be
modelled as (Fig. 1(b))

n2(r) − 1 = [n2(r) − 1]Π
(︃

z
∆z

)︃
. (3)

where Π is the rectangular function of width ∆z, Π(x) = 1 for x ∈ [−0.5, 0.5] and vanishes outside
this range. Here, the suggested slice in Fig. 1(b) is mathematically captured by the rectangular
function Π. For an infinitesimally thin object (screen) shown in Fig. 1(b), the scattering potential
is proportional to n2(r) − 1 ≃ [n2(r⊥) − 1]∆zδ(z), where δ is Dirac’s function and r⊥ = (x, y) the
transverse coordinate. We define the transmission function of the diffracting screen to be of the
form,

t(r⊥) = β0[n2(r⊥) − 1]∆z. (4)

Fig. 1. Diffraction at a thin screen. a. Plane wave, U0(r), propagating with a wavevector, ki,
is incident on a thin diffracting object. Each point inside the aperture acts as a secondary point
source, emitting spherical waves that sum up to form a diffraction pattern at an observation
plane. b. The diffracting screen is modelled as a slice of infinitesimal width ∆z in the z
direction. c. Wavevector, with its transverse and longitudinal component notations, as used
in text.

The Helmholtz equation becomes,

(∇2 + β2
0)U(r;ω) = −β0δ(z)t(r⊥)U(r;ω), (5)

The solution of Eq. (5), U, is the sum of the incident field, U0, and diffracted field, U1,
U = U0 + U1, with U0 satisfying the homogenous wave equation. We consider that the thin
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screens involved in common diffraction problems satisfy the first-order Born approximation,
which allows us to replace U on the right hand side of Eq. (5) with U0.

Thus, solving Eq. (5) for U1 in k-domain, we obtain

U1(k;ω) =
β0

k2 − β2
0
[t(k⊥) VOkU0(k;ω)], (6a)

where VOk stands for the convolution integral over k (we use the same notation for a function and
its Fourier transform, but carry the arguments explicitly to avoid any confusions). In order to
bring the field expression in the (k⊥, z) representation, we first separate the kz-dependence in
Eq. (6a) as

U1(k;ω) = β0
k2

z−γ2(k⊥)
[t(k⊥) VOkU0(k;ω)]

=
β0

2γ(k⊥)

(︂
1

kz−γ(k⊥)
− 1

kz+γ(k⊥)

)︂
[t(k⊥) VOkU0(k;ω)]

, (6b)

where γ2(k⊥) = β
2
0 − k2

⊥ (see, e.g., [23]).Taking the inverse Fourier Transform with respect to kz,
we use the fact that the term 1/(k2 − β2

0) yields an inverse Fourier Transform for the outgoing
wave (neglecting the back propagating wave component) of the form i eiγ(k⊥)z

2γ(k⊥)
, As a result, Eq. (6b)

can be re-written as

U1(k⊥, z;ω) = i
β0 eiγ(k⊥)z

2γ(k⊥)
VOz[t(k⊥)δ(z) VOk⊥

U0(k⊥, z;ω)]

= i
β0 eiγ(k⊥)z

2γ(k⊥)
VOz[δ(z)t(k⊥) VOk⊥

U0(k⊥, 0;ω)]
, (7)

where we used the property of the delta-function that yields δ(z)U0(k⊥, z;ω) = U0(k⊥, 0;ω)δ(z).
Finally, using the convolution property of a delta-function [24], Eq. (7) simplifies to

U1(k⊥, z;ω) = iβ0 [t(k⊥) VOk⊥
U0(k⊥, 0;ω)]

eiγ(k⊥)z

2γ(k⊥)
(8)

Equation (8) represents a very general diffraction formula in the angular spectrum representation,
i.e., the (k⊥, z) domain, which recovers the well-known result (see, e.g., Ref. 7, Chap. 3, and
Fig. 1(c)). This representation exhibits an interesting feature in that the only z-dependence
comes from the phase term eiγ(k⊥)z, which makes predicting the diffracted field distribution at
various planes z = z1, z2, etc., particularly easy as we can translate a field from z1 to z2 by simply
multiplying with eiγ(k⊥)(z2−z1)

Bringing the result into the spatial domain, by taking the inverse Fourier transform of Eq. (8)
with respect to k⊥, we recover the Huygens-Fresnel formula, namely,

U1(r⊥, z;ω) = −iβ0
[︃
U0(r⊥, 0;ω)t(r⊥) VOr⊥

eiβ0r

r

]︃
. (9)

Note that assuming the incident field a plane wave along z, such that U0(r;ω) = A(ω)eikizz,
Eq. (9) becomes U1(r⊥, z;ω) = −iβ0 A(ω)eikizz

[︂
t(r⊥) VOr⊥

eiβ0r

r

]︂
. Various approximation com-

monly encountered in practice can be obtained easily from Eq. (8) by invoking different degrees
of small-angle assumptions (Fig. 2).

First, if we approximate γ ≃ β0 in the amplitude term of Eq. (8), we obtain,

U1(k⊥, z;ω) ≃
i
2

A(ω)t(k⊥)eiγ(k⊥)z. (10)

Equation (10) is the angular spectrum propagation approximation, which simplifies the field
propagation significantly. However, Eq. (10) is a fairly accurate representation of the field for most
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Fig. 2. Approximations. a. Diffracting aperture is placed at z=0 and observation plane is
at z. Field at the aperture and observation is U0(x, y) and U1(x, y) respectively, r is the
position vector of the observation point and Θ1 is the angle of observation. b. For small
angle approximations or at sufficiently large distance z, γ≈β0.

applications, as it keeps the phase term intact. The next, coarser approximation is due to Fresnel,
which is obtained by approximating γ in the phase term as γ ≃ β0

(︂
1 −

k2
⊥

2β2
0

)︂
. Substituting this in

Eq. (10)

U1(k⊥, z;ω) =
i
2

A(ω)t(k⊥)e
iβ0

(︃
1− k2

⊥

2β2
0

)︃
z
. (11)

In the spatial domain, the Fresnel approximation gives the well-known result

U1(r⊥, z;ω) =
−iβ0
2z

A(ω)eiβ0z

[︄
e

iβ0

(︃
r2⊥
2z

)︃
VOr⊥ t(r⊥)

]︄
(12)

Finally, the coarsest approximation is due to Fraunhofer, which, for even smaller angles of
diffraction, allows us to neglect quadratic terms in the convolution in Eq. (12). The Fraunhofer
approximation yields the diffracted field being expressed as the Fourier transform of the
transmission function, namely

U1(x, y, z;ω) = −iβ0
2z A(ω)eiβ0ze

iβ0

(︃
x2+y2

2z

)︃
t(kx, ky)

kx = β0x/z, ky = β0y/z
(13)

Next, we apply the Born approximation formalism to the classical problem of the spherical
wave diffracting at an aperture (Fig. 3), which was studied by Rayleigh, Fresnel, Kirchhoff and
Sommerfeld. In order to solve for the incident field generated by an arbitrary point source at an
aperture (Fig. 3), we consider the source as δ(r) = δ(r − r0), with spectral dependence denoted
by A(ω), driving the wave equation,

∇2U0(r) + β2
0U0(r) = A(ω)δ(r − r0) (14)

In Eq. (14), the field solution, U0, represents the incident field, which can be used to calculate
the diffracted field U1 via Eq. (8). In the k domain, U0 can be obtained at once,

U0(k) =
−e−ik.r0

k2 − β2
0

, (15a)
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which in the spatial domain yields a shifted spherical wave,

U0(r) =
eiβ0 |r−r0 |

|r − r0 |
, (15b)

Fig. 3. Diffraction by an aperture. P is the illuminating point source with position vector,
r0, making an angle Θ0 with the outward normal to aperture surface. U0(r) is the incident
field at the aperture and U1(r) is the diffracted field at observation point with position vector
r making an angle Θ1 with the outward normal to aperture surface.

Thus, the diffracted field can be obtained using the general solution in Eq. (9), namely,

U1(r) = −iβ0A(ω)
∫∫

a

eiβ0 |(r′⊥,0)−r0 |

|(r′⊥, 0) − r0 |

eiβ0 |r⊥−r′⊥,z |

|r⊥ − r′⊥, z|
d2r′⊥ (16)

Changing the notations (as shown in Fig. 4) to those used in Ref. [7], and using the
relationships, r0 = (x2, y2, z2), r′ = (x1, y1, 0), r′⊥ = (x1, y1), r = (x0, y0, z0), r⊥ = (x0, y0),

r21 =

√︂
(x2 − x1)

2 + (y2 − y1)
2 + z22 = |(r′⊥, 0) − r0 |, r01 =

√︂
(x0 − x1)

2 + (y0 − y1)
2 + z02 =

|r⊥ − r′⊥, z|.
Equation (16) transforms to

U(x0, y0, z0) =
A(ω)

iλ

∫∫
a

eiβ(r21+r01)

r21r01
ds (17)

which is consistent with conventional diffraction formula as described in Ref. [7] and reiterated
in Eq. (18), with obliquity factor f (θ)=1.

U(x0, y0, z0) =
A
iλ

∫∫
a

eiβ(r21+r01)

r21r01
f (θ)ds . (18)

where, the obliquity factor f (θ) for the three conventional diffraction solutions are

f (θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2 [cos(n, r01) − cos(n, r21)] for Kirchoff

cos(n, r01) for Rayleigh - Sommerfeld - I

− cos(n, r21) for Rayleigh - Sommerfeld - II .

A MATLAB simulation of our solution (Eq. (17) and the three conventional diffraction solutions
(Eq. (18) for axial intensity calculations based on [25], show that our solution matches closely
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Fig. 4. Notations: In blue, we show the coordinate notations that convert our result into an
identical form with that in Ref. [7].

Fig. 5. Comparison of our results with the existing formulas through simulation of diffraction
through a circular aperture in an opaque screen illuminated by a diverging point source: a.
point source is on axis, our solution matches Rayleigh -Sommerfeld-II solution, b. point
source is off-axis at a small angle, our solution still matches Rayleigh -Sommerfeld-II
solution, c. point source is off-axis at a large angle, our solution matches the Rayleigh
-Sommerfeld-II solution trend (blue line) but is scaled in amplitude.

with Rayleigh-Sommerfeld-II solution when the diverging point source is on axis (Fig. 5(a)) or
at a small angle from the axis (Fig. 5(b)). However, as evident in Fig. 5(c), when the angle of
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illumination increases, our solution while still closely following Rayleigh-Sommerfeld-II solution,
gets scaled in magnitude, which is expected due the lack of obliquity factor. As mentioned
in [26], for thin phase objects, which is essential to our diffraction formalism presented here,
Rayleigh-Sommerfeld-II solution matches well with the experimental results as compared to the
other two conventional solutions, validating our approach. We note that the difference between
our solution and the three conventional solutions decreases as the propagation distance increases.

In summary, we presented an approach to derive the expression for diffraction by a thin object
directly, without the need for a priori boundary conditions. The starting point in this derivation is
the realization that scattering and diffraction are fundamentally driven by the same interaction of
light with inhomogeneous media. Traditionally, “scattering” refers to interaction with 3D objects,
while “diffraction” generally describes the light emerging from 2D objects such as apertures,
thin gratings and screens. However, applying the scattering Born approximation to thin 3D
objects, we showed that the general formulation for diffraction can be obtained without angular
approximations. Our result is consistent with the three classical formulas described in Ref. [7]
with unit obliquity factor. As pointed out in Ref. [22], obliquity factor can be reintroduced if
we modify the Green’s function through a mathematical adjustment, which, as per the paper
itself, has no realistic physical explanation. However, an aim of our study is to avoid any such
mathematical assumptions which have no physical explanations and hence demonstrate a simple
way to reach the diffraction formulas through scattering.

Traditionally, the field of light imaging, diffraction, and Fourier Optics, have been mainly
concerned with the 2D problem and captured mostly an engineering audience. On the other hand,
light scattering, dealing with the 3D interaction, seems to be mostly driven by physicists. We
hope that revisiting this classical problem with a unifying formalism of scattering and diffraction
may help bring closer the fields of optical imaging and scattering, which are in essence different
descriptions on the same light-matter interaction phenomenon.
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