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Abstract: In this paper, we extend our recent work on partially coherent 
quantitative phase imaging (pcQPI) from two-dimensional (2D) to three-
dimensional (3D) imaging of weakly scattering samples. Due to the 
mathematical complexity, most theoretical modeling of quantitative phase 
image formation under partial coherence has focused on thin, well-focused 
samples. It is unclear how these abberations are affected by defocusing. 
Also, as 3D QPI techniques continue to develop, a better model needs to be 
developed to understand and quantify these aberrations when imaging 
thicker samples. Here, using the first order Born’s approximation, we 
derived a mathematical framework that provides an intuitive model of 
image formation under varying degrees of coherence. Our description 
provides a clear connection between the halo effect and phase 
underestimation, defocusing and the 3D structure of the sample under 
investigation. Our results agree very well with the experiments and show 
that the microscope objective defines the sectioning ability of the imaging 
system while the condenser lens is responsible for the halo effect. 
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1. Introduction 

Quantitative phase imaging (QPI) has developed into a key topic in the field of biomedical 
imaging as it offers intrinsic information on refractive index and sample topography (see [1] 
and the references therein). The quantity of interest in QPI is the optical path length variation 
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across the image field. This parameter is defined as the argument of a cross-correlation and 
thus, it can be extracted from interferometric experiments. The interferometric modalities can 
be divided into the traditional (e.g [2–7].) and common-path (e.g [8–24].) subgroups. The 
latter subgroup generates the reference field by spatially filtering the total field emerging 
from the sample. Hence, it possesses very high stability to ambient noise. A recent marriage 
between common path and white-light methods has further suppressed the speckle 
phenomenon, allowing highly sensitive measurements [8], [25], [26].An important benefit of 
these common path methods is the ability to be directly deployed from commercially 
available microscopes since only the total field relayed to the output port of the microscope is 
required. In QPI, the phase ( )φ r  is defined as (see Eq. (4).3-34 in [27]) the argument of the 

temporal cross-correlation function between the total field, t i s= +U U U  and a reference field 

,rU  evaluated at zero delay, 0,τ =  [28] i.e. ( ) ( ),arg , ,t rJφ  =  r r r  where 

( ) ( ) ( ) ( )*
, ,, , ,0 , ,t r t r t r t

J t t= Γ =r r r r U r U r . This quantity can be retrieved using any of 

aforementioned interferometric imaging modalities. Figure 1 shows the diffraction phase 
microscopy (DPM) setup [9] used in this paper. More information on how to obtain ( ), ,t rJ r r  

from intensity measurements in DPM can be found in the Appendix A. 
In recent publications [28, 29], we showed that, in common-path QPI modalities, the 

imperfection of the pinhole together with the partially coherent property of the illumination 
field may generate inaccuracy in the phase measurements. The net effect is an 
underestimation of the phase in regions of larger lateral extent than the coherence area and 
erroneous negative values at the edges. In phase contrast microscopy, this phenomenon is 
usually referred to as the halo effect [30]. A necessary condition for recording a halo free 
image without post-processing is the use of an illumination source with a coherence area that 
is larger than the field of view [29]. Otherwise, the data will be affected by the halo effect and 
phase underestimations. However, to our knowledge, most studies on these artifacts typically 
assumed thin, well-focused samples [31–40] where the sample is characterized by a 
transmission function ( )T ⊥r . To our knowledge, it is not yet clear how these effects vary 

when the sample is neither well-focused nor a good focus plane can be found. The later case 
usually happens when the thickness of the sample is not small enough compared to the depth 
of field. In this paper, we derive a model describing the image formation of common-path 
QPI under partially coherent illumination when the sample is characterized by its 3D 
susceptibility function ( ).Χ r  The optical system scans axially (z-direction) through the 

volume of the object and phase measurements at multiple z-steps are recorded. Our derived 
model connects the phase measurement to the susceptibility of the sample. Also, similar to the 
2D case, it explains the halo and phase-underestimation artifacts and provides a 
generalization to the 2D problem. We show that, under the Born settings, the measured phase 
is a high-pass version of an ideal phase, defined on the susceptibility of the sample. The high-
pass filtering kernel describes the halo and phase-underestimation artifacts. More importantly, 
it only relates to the condenser of the imaging system and, invariant to defocusing. Therefore, 
the halo and phase-underestimation artifacts are unchanged due to defocusing. These effects 
can be seen from the data in Fig. 2 when scanning the sample over its z-stack over a range of 
[-20, 20] μm. Figures 2(a), 2(c) and 2(e) show 3D phase measurements for a transparent 
quartz micropillar 20 μm wide and 123 nm thick using the DPM setup shown in Fig. 1. The 
region under the influence of the halo does not seem to broaden or blur due to defocusing. 
Figures 2(e)-2(f) capture this observation by showing the x-z cross-sections over the entire z-
range. Again, the sample gets blurred due to defocusing but the halo remains unaffected. 

#262749 Received 7 Apr 2016; revised 10 May 2016; accepted 11 May 2016; published 19 May 2016 
(C) 2016 OSA 30 May 2016 | Vol. 24, No. 11 | DOI:10.1364/OE.24.011683 | OPTICS EXPRESS 11685 



 

Fig. 1. A diffraction phase microscopy setup where two replicas of the total field at the output 
port of the microscope are generated by a diffraction grating. One of them is conjugated to the 
camera plane. The other is low-pass filtered by a physical pinhole to create a reference field. 
Interference fringes of these two fields are recorded by the camera and the measured phase of 
interest, ( ) ,φ r  is obtained using the Hilbert transform. For more details, see [29]. 

2. Theory 

Here, we propose a mathematical analysis that explains these phenomena for a 3D sample 
characterized by a refractive index function ( ).n r  We assume that the object is weakly 

scattering, so that the first-order Born approximation is applicable. Again, the reference field 
is generated by 2D spatially filtering the total field emanating from the sample, i.e. 

( ) ( ) ( )2, ,r t toz z d z
⊥ ⊥

= ≡U U r r U where z  is the axial coordinate. From now on, we will 

use the “o” subscript to denote the spatial filtering operation to generate the reference. The 
main result of our calculation is that the phase measured with partially coherent illumination, 
φ , is given by the following equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 .i ih hφ ϕ ϕ ϕ δ ≈ − = − r rr r r r r r rⓥ ⓥ  (1) 

where ( )ϕ r  is the “ideal” phase, expected in conditions of perfect coherence, ( )ih r  is the 

spatial correlation function associated with the illuminating field, ( )3δ  represents the 3D 
Dirac delta-function, and rⓥ  denotes the 3D convolution operation over the 3D coordinate r  

. It can be seen from Eq. (1) that our measurement ( )φ r  is a high-pass filtered version of 

( )ϕ r  where the high-pass kernel is given by ( ) ( ) ( )3 .ihδ − r r  More importantly, the kernel 

,ih  in spite of being a function of r , only performs filtering in the transverse coordinate, ,⊥r  

i.e. ( ) ( ) ( ) ( )i S Sh zδ⊥∝   r r 0  (See the Appendix D for more details). Here, ( )S ⊥r  is the 

two-dimensional Fourier transform of the aperture intensity, also call the mutual intensity 
function of the illumination [41, 42], evaluated at the image plane. By the central ordinate 

theorem, we have ( ) ( ) 2 ,dS S ⊥ ⊥0 r r  the spatial power spectrum of the illumination, 

evaluated at zero transverse spatial frequency, .⊥ =k 0  Consequently, the halo effect does not 

change over the axial dimension. Fully coherent illumination corresponds to a function ,ih  

that is uniform in x-y namely, ( ) ( ) ( )1ih zδ⊥=r r . As a result, and ( ) ( ) .constφ ϕ≈ −r r , 

which indicates that the measurement is ideal (up to an insignificant constant). The halo is 
absent in this case. 
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Fig. 2. Experimental (left) and simulated (right) thickness measurements in nanometers for 3D 
PC-QPI imaging of 20 μm  width, 123 nm thick micropillars at 0.0072.cNA =  (a) and (b) 

show the thickness recovered from ( )φ r  at the sample plane. (c) and (d) are thickness 

measurements at +10 mμ from the sample plane (forward scattering). (e), (f) show the xz 
cross-section for the thickness measurements at y = 0.0 μm. The halo and phase reduction can 
be seen for all these z-steps. 

On the other hand, for incoherent illumination, i.e. ( ) ( ) ( )3 ,ih δ=r r  we have ( ) 0,φ →r  

which establishes the impossibility of phase measurement under fully incoherent illumination. 
All intermediate cases between these two limits result in a phase image with low frequency 
attenuation in sharply transient areas, i.e., edges, lines, etc, while preserving high frequency 
information. This is the source of the halo effect commonly known in phase contrast 
microscopy [30]. More importantly, it can be seen that the kernel does not vary along the z-
dimension and is not affected by defocusing. Equation (1) looks quite similar to its 
counterpart, Eq. (7) in [31]. However, there are fundamental differences between them. First, 
Eq. (1) tells that the measured phase, ,φ  is linearly related to the “ideal” phase, ϕ  at each 3D 

coordinate .r  Meanwhile, Eq. (7) in [31], ( ) ( ) ( ) ,i
ie hϕφ ϕ

⊥⊥ ⊥ ⊥ ≈ −  rr r rⓥ  provides a non-

linear relation between the measured phase, ,φ  and the “ideal” phase, ,ϕ  at each transverse 

coordinate ⊥r . Second, the “ideal” phase in this paper is a function of the susceptibility which 
is a generalization of the “ideal” phase in [31], which is the argument of the sample 
transmission. We further show the convergence of this “ideal” phase to the argument of the 
sample transmission for thin sample in Appendix B. 
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Now, let us sketch out a proof for Eq. (1). For more details, please refer to the Appendix. 
We start by expressing the total and reference field as ,t i s= +U U U and to io so= +U U U . 
Then, the cross-correlation function becomes 

 ( ) ( ) ( ) ( ) ( ) ( )* *
, , , , ,, , , , , , , ,t r i s io so i io s io i so s sot

J J J J J= + + = + + +r r U U U U r r r r r r r r r r

 (2) 

where , , , ,, , ,i io s io i so s soJ J J J  are cross-correlation functions, evaluated at zero-delay 0,τ =  

between the incident field & its low-pass version, the scatter field & the incident low-pass 
version, the incident field & the scattering low-pass version, the scatter field & its low-pass 
version, respectively. Ignoring the ( ), ,s soJ r r  term due to its much smaller amplitude, the 

following results hold (see the Appendix C, D, E for short proofs). 

 ( ) ( ), , ,i ioJ S=r r 0  (3) 

 ( ) ( ) ( ), , ,s ioJ iS ϕ=r r 0 r  (4) 

 ( ) ( ) ( ) ( ), , ;0 .i so iJ iS hϕ= −   rr r 0 r r ⓥ   (5) 

Note that, among these terms, the first one, ,i ioJ , only relates to the illumination. The second 

and third terms are imaginary; they carry the sample information through the phase quantity 

( ) ,ϕ r which further relates to the susceptibility of the sample, ( )X r . The fact that these two 

terms have opposite signs tells that they cancel out each other causing the phase-
underestimation artifact. Using these terms, Eq. (1) can be proven easily using 

 

( ) ( ) ( )
( ) ( ) ( ){ }

( ) ( ) ( ) ( )

, , ,

, , ,

3

arg , ,0 arc tan Im Re

arc tan , , ;0 ,

.

t r t r t r

s io i so i io

i

J J J

J J J

hϕ δ

   =   

 = + 

 = − r

r r

r r r r r r

r r rⓥ

 (6) 

3. Experiments 

To validate our model, we performed QPI measurements and simulations under various 
degrees of spatial coherence and defocusing. To change the coherence of the illumination, we 
vary the numerical aperture of the condenser .conNA  Smaller values of conNA  gives narrower 

spatial power spectrum of the illumination, ( )S ⊥k , and, hence, laterally broader ih  and vice 

versa. Four different values of conNA  were used: 0.0036, 0.0072, 0.014 and 0.09. We used 
quartz pillars as samples, the refractive index of which is 1.545 at the central wavelength 574 
nm. The surrounding medium is air with refractive index of 1.n =  These parameters are used 
for simulation using Eq. (1). We obtained DPM measurements at several z-steps and with 
different values of the numerical aperture. The step size is set to 0.57 μm, which is about 4.6 
times of the pillar’s thickness. For each value of conNA , z-steps in the range of [-12.5, 12.5] 
μm from the sample plane were acquired. Figures 2(b), 2(d), and 2(f) show our measurements 
and simulation results for the phase measurements at different z-positions for the case of 

conNA =  0.0072. It can be seen that the simulation has an excellent agreement with the 
experiments shown in Figs. 2(a), 2(c), and 2(e). Figure 3 shows experimental and simulated 
cross-sectional profiles for the thickness measurements at different values of conNA  for the 
sample at two focal planes . The height profiles confirm the prior conclusion that, as the 
sample is scanned through focus, the object blurs but the halo remains constant. In our 
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simulation, we use a Gaussian profile for the spatial power spectrum, ( )S ⊥k , with standard 

deviation of .conNAβ  Good agreement between the simulated and measured profiles can be 
seen at the sample plane in Figs. 3(a) and 3(b). However, at 10 μm from the sample plane in 
Figs. 3(c) and 3(d), the simulation exhibits more significant modulation (“ringing”) than the 
experimental results. This can be attributed to various smoothing effects in the optical setup 
and the fact that our simulation is based on monochromatic light, while in the actual 
experiment, the illumination has finite bandwidth around this frequency. Therefore, the 
diffraction ringing is washed out in experiments due to the combination of different 
diffraction kernels at different optical frequencies 

 

Fig. 3. Comparison between the experimental and simulated profiles for 123 nm quartz pillars 

for different values of conNA  at the plane of sample (a), (b) and at  10.0 μm from the plane of 

sample (c) and (d). 

Figure 4 illustrates the independence of defocusing, which is due to the low-pass filtering 
performed by the microscope objective, as well as the halo effect, which is the results of low 
spatial coherence. Figure 4(a) shows three different x-z cross-sections of the phase 
measurement ( ), 0,x y zφ =  for three different values of .conNA  The phase underestimation 

and halo effects can be seen in the second and the third cases. To get an insight of how these 

effects vary with respect to depth z, we take the 1D Fourier transform ( ), 0,xk y zφ =  of the 

cross-sections at z = 0.0 μm and z = 15.0 μm. We first find the regions in the spatial spectra 
that are affected by the halo only, defocusing only or both. From Eq. (1), it can be seen that 

the band-pass kernel ( ) ( ) ( )3
ihδ − r r  acts as a high-pass filter, suppressing low-frequency 

components of the ideal phase ( ).ϕ r  Hence, the spatial frequency domain can be divided into 

2 regions. Region 1 is only affected by the defocusing and the frequency spectrum of the 
object χ.  Region 2 is affected by all contributions, including defocusing, low-frequency 

suppression and χ.  It is clear from Fig. 4(b) that for each z-position, the amplitude spectra in 
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region 1 are almost identical for each value of ,conNA  indicating that the condenser aperture 
only affects the low-frequency range of the measured phase. Defocusing and depth sectioning 
only relate to the numerical aperture of the objective. Figures 4(c)-4(e) show amplitude 
spectra for the 3 different values of z at 0.0036,0.0072,conNA =  and 0.014 respectively. Note 
that the spectra are almost the same for region 2 for all 3 values of z, indicating that the low-

frequency suppression due to the spatial coherence kernel ( ) ( ) ( )3
ihδ − r r  is essentially 

invariant to the depth z. 

 

Fig. 4. (a) Three different x-z cross-sections of for 3 different values of the numerical apertures 
of the condenser. (b) Amplitude spectrum at z = 0.0 um and z = 15.0 um for tree values of 
NAcon. (c)-(e) Amplitude spectra for 3 different values of z at NAcon = 0.0036, 0.0072 and 
0.014, respectively. 

Next, we expand our analysis to thick, weakly scattering sample. Figure 5(a) shows x-y 
and x-z cross-sections of a simulated squared micropillar of dimension 30× 30× 25 μm3, . 
Here, the thickness is 25 μm. The pillar has refractive index of 1.01. The surrounding media 
has the refractive index of 1.00. Using the central wavelength of 0.574 μm, the total phase 
shift generated by this pillar is 2.19 rad. Here, we have intentionally chosen the thickness and 
the refractive index so that the total phase shift is less than 2π  to avoid any possible phase 

wrapping. Figure 5(b) shows one x-z and three x-y cross-sections of the ideal phase, ( ) ,ϕ r  

using its formula given in Eq. (9). The x-z one is evaluated through the center of the pillar at 
the plane 0y =  μm. The x-y ones are evaluated at three different planes 0,z =  10,z = −  

20z =  μm, denoted in the x-z cross-section. It can be seen that this the total phase shift of 
2.19 rad can be observed in all three x-y cross-sections with different amount of defocusing. 
Figure 5(c) shows the x-z cross-sections of the measured phase under different numerical 
apertures of the condenser 0.0036,0.0072,conNA =  and 0.014 respectively. Dashed black 
rectangles denote the regions corresponding to the location of the pillar. Obviously, the halo 
and phase-under estimation get worse at larger values of the condenser aperture .conNA  These 
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effects are decoupled from the defocusing as discussed in the previous section. The code for 
our simulation can be obtained at https://github.com/thnguyn2/3D_halo_modeling.git. 

 

Fig. 5. (a) x-y and x-z cross-sections of a simulated micropillar of dimensions 30 x 30 x 25 
µm3. (b) x-z and 3 x-y cross sections of the “ideal” phase, ϕ . The dashed rectangle denotes 

the locations of the micropillar. The next three cross-sections are evaluated at three different 
planes z = 0 µm, z = −10 µm, and z = 20 µm, denoted by while lines in the first x-z cross-
section, respectively. (c) x-z cross-sections of the measured phase, ,φ  evaluated at three 

different values of ,conNA  namely 0.0036, 0.0072 and 0.014. 

5. Conclusion 

In sum, we have developed a model to quantify the halo effect and phase reduction in 3D 
pcQPI experiments. Our model relates sample thickness, spatial coherence, defocusing, and 
field propagation to observed effects in the final measurement. The formalism is general and 
applicable to thin samples as well as thick, weakly scattering objects. 

Appendix A: Extracting ( ), ,t rJ r r  from the interference fringes 

The DPM intensity image captured by the camera can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
exp , exp , exp .r t xo r t rt xo tr xo

t
I ik x I I J ik x J ik x= + = + + − +r U r U r r r r r r r

 Here, xok  is the spatial wave vector generated by the DPM grating. Note that the first two 

terms in the expansion of ( ), ,t rJ r r  exist at base-band while the third term and fourth term 

are centered around [ ],0xok⊥ = ±k  in the spatial frequency domain. Therefore, ( ),trJ r r  can 

be obtained by applying a band-pass filter on ( )I r  so that its bandwidth matches to that of 

the fourth component, followed by shifting the remaining spectrum into baseband. This is the 
principle of off-axis holography proposed by Gabor [43]. 
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Appendix B: The ideal phase ( )ϕ r  

The “ideal” phase is given as ( ) ( ) ( )( ) ( )12 .
i q n z

n X e
βϕ β

⊥

−−  = − ℑ    r kr rⓥ In order to show 

its connection with the sample transmission for thin sample in the two-dimensional case, let 
us consider a thin object, of thickness ,h  placed around the 0z =  plane, characterized by the 

susceptibility function ( ) ( ) ( ) ( ) ( )2 2 2 ,z h n n n z h n n⊥ ⊥
 Χ = Π − ≈ Π −   r r r  where ( ).Π  

is the rectangular function. We have also approximate ( ) 2 .n n n⊥ + ≈r  For well-focus 

sample, ignore the defocusing diffraction i.e. ( )( ) ( ) ( ) ( )21 1
i q n z

e z
β δ

⊥

−−
⊥ℑ →k r , we have 

( ) ( ) ,h n nϕ β ⊥→ − −  r r  which is the definition of phase for the two-dimension case. 

Appendix C: Proof of Eq. (3) 

We have ( ) ( ) ( ) ( )* 2 2
, , ;0 , , ' , , ' , , ' , ' .i io i i ii

t
J z t z t d J z z d⊥ ⊥ ⊥ ⊥ ⊥ ⊥= = r r U r U r r r r r  

Combine this equation with Eq. (14) of [44], in which 

( ) ( ) ( ) 2, , ' , exp . ' ,iiJ z z S i d⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= −  r r k k r r k  we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )22 2 2
, , ;0 exp . ' ' ,i ioJ S i d d S d Sδ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= − = =    r r k k r r k r 0 k k 0    

which completes the proof for Eq. (3). 

Appendix D: Proof of Eq. (4) 

The scattered field is given using the 1st-order Born approximation as 

( ) ( ) ( ) ( )2 3; ' ', ' ',s it X t g dβ≈ − −U r r U r r r r  where ( ).g  is the Green’s function. For 

simplicity, we ignored dispersion of the sample, i.e. ( ) ( )2 2X n n= −r r  is independent of 

wavelength. The second term reduces to 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

* 2
,

2 3 * 2

2 3 2

, , , '' , , ''

' ' , ', ' ' '' , , ''

' ' , ', '' , ' ' '' .

s io s i
t

i i
t

ii

J z t z t d

X z t g d z t d

X J z z g d d

β

β

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥ ⊥

=

= − −

= − −


 


r r U r U r r

r U r r r r U r r

r r r r r r r

 (7) 

Again, Eq. (14) of [44] gives 

( ) ( ) ( ) ( ) 2' , ', '' , exp . ' '' ( ' ) ,iiJ z z S i iq z z d⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= − + −  r r k k r r k k  which greatly 

simplifies Eq. (7) to 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ){ }( )

2 2 3 2
,

2 3 2

, ' exp . ' '' ( ' ) ' ' ''

' ' exp ( ') ' exp .

s ioJ X S i iq z z d g d d

S X g in z z d S X g in z

β

β β β β

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

= − − + − −  

  = − − − − = − −   

 
 r

r r r k k r r k k r r r r

0 r r r r 0 r



  ⓥ

 (8) 

Under paraxial approximation ( ) ( )1 2 ,iqzg i e nβ
⊥

−≈ ℑkr  Eq. (8) reduces to: 

( ) ( ) ( ) ( ){ }{ }( ) ( ) ( )1
, , 2 .

i q n z

s ioJ iS X n e iS
ββ ϕ

⊥

−−
⊥ ⊥

  = − ℑ =   r kr r 0 r 0 r ⓥ  where 
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 ( ) ( ) ( )( ) ( )12 .
i q n z

n X e
βϕ β

⊥

−−  = − ℑ    r kr rⓥ  (9) 

Appendix E: Proof of Eq. (5) 

 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

* 2
,

2 * * * 3 2

2 * * 3 2

, , , ' , , '

'' , , '' , '', ' '' '' '

'' , , '' , '' ' '' , z z'' '' ' .

i so i s
t

i i

ii

J z t z t d

X z t z t g d d

X J z z g d d

β

β

⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

=

= − −

= − − −





r r U r U r r

r U r U r r r r r

r r r r r r r

 (10) 

Using Eq. (14) of [44] and dropping the conjugate notation on X  since it is a real function as 
well as changing the order of integration, we have: 

 

( ) ( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( ){ }
2 2 * 3 2

,

2 2 * 2 3

, '' exp . '' ( '') ' '' , z z'' '' '

'' exp . '' ( '') ' '' , z z'' ' ''.

i soJ X S i iq z z d g d d

X S i iq z z d g d d

β

β

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

= − − + − − −  

= − − + − − −  

 
  

r r r k k r r k k r r r r

r k k r r k k r r r r





 (11) 

Under the paraxial approximation: ( ) ( )''* 2 1' '' , z z'' ' 2 ,in z zg d i e nβ β
⊥

− −−
⊥ ⊥ ⊥

 − − ≈ − ℑ   kr r r  Eq. 

(11) reduces to: 

 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( ){ } ( ) ( ) ( ){ }{ }( )

( )

2 3
,

''1 3

1

1

, 2 '' exp . '' ( '') ''

2 '' '' ''

2

2

i so

i q n z z

i q n z

i q n z

J i n X S i i q n z z d d

i n X e S d

i n X e S z

iS X n e S S z

iS

β

β

β

β β

β

β δ

β δ

⊥ ⊥

⊥

⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

− −−

−−
⊥

−−
⊥ ⊥ ⊥

⊥

  = − + − −  

 = ℑ −  

 = ℑ    

  = ℑ   

=

 

 k r

r k r

r k r

r r r k k r r k k r

r r r r

r

0 r 0 r

0



 



ⓥ

ⓥ ⓥ

ⓥ ⓥ

( ) ( )( ){ }{ }( ) ( ){ }( )12 ,
i q n z

i iX n e h iS h
ββ ϕ

⊥

−−
⊥ ℑ = − r k r rr 0 rⓥ ⓥ ⓥ

 (12) 

where ih  was defined as ( ) ( ) ( ) ( )i S Sh zδ⊥=   r r 0  as introduced in the main text. 
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