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7.1. Low-Coherence Interferometry (LCI) 

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 

The light is split by the beam splitter (BS) and directed toward two mirrors, M1 and M2, which reflect the field 

back. Mirror M2 has an adjustable position, such that the phase delay between the two fields can be tuned. Finally, 

the two beams are recombined at the detector, via the BS (note that power is lost at each pass through the BS).  

Examples of low-coherence sources include light emitting diodes (LEDs) superluminescent diodes (SLD), Ti:Saph 

lasers, and even white light lamps. Of course, the term “low-coherence” is quite vague, especially since even the 

most stabilized lasers are of finite coherence length. Generally, by low-coherence we understand a field that has a 

coherence length of the order of tens of microns (wavelengths) or less. We found previously (Section 3.3.) that the 

coherence length of a field with central wavelength 0  and bandwidth   is of the order of 2
0 /c   . A qualitative 

comparison between the optical spectrum of a broadband source and that of a laser is shown in Fig. 1b.  
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Figure 1. a) LCI using a Michelson interferometer. Mirror M2 adjusts the path-length delay between the two 

arms. b) Illustration of optical spectrum for various sources. 

Let us now calculate the LCI signal in this Michelson interferometer. The total instantaneous field at the detector is 

the sum of the two fields, 
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where   is the delay introduced by the mobile mirror ( 2M ), 2 /L c    (the factor of 2 stands for the double pass 

through the intereferometer arm). The intensity at the detector is the modulus-squared average of the field, 
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where the angular brackets denote temporal averaging. 

In Eq. 2 we recognize the temporal cross-correlation function 12 , defined as (see Section 3.3.) 
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From Eq. 3, we see that the cross-correlation function can be measured experimentally by simply scanning the 

position of mirror 2M . Using the (generalized) Wiener-Kintchin theorem, 12  can be expressed as a Fourier 

transform 

   12 12 .iW e d      4 

In Eq. 4, 12W  is the cross-spectral density [2], defined as 
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Note that 12W  at each frequency  is obtained via measurements that are time-averaged over time scales of the order 

of 1/. Thus, W12 is inherently an average quantity. 

For simplicity, we assume that the fields on the two arms are identical, i.e. the beam splitter is 50/50. We will study 

later the case of dispersion on one arm and the effects of the specimen itself. For now, if    1 2U U  ,  12W   reduces 

to the spectrum of light, S, and 12  reduces to the autocorrelation function,  , 
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Figure 2. Low coherence interferometry with a perfectly balanced interferometer. 
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The intensity measured by the detector has the form shown in Fig. 2a. Subtracting the signal at large   (the DC 

component), which equals 12I  for perfectly balanced interferometers, the real part of   is obtained as shown in Fig. 

2b. Therefore, as discussed in Appendix A, we can calculate the complex analytic signal associated with this 

measured signal. Using the Hilbert transformation, the imaginary part of   can be obtained as, 
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where P indicates a principal value integral. Thus, the complex analytic signal associated with the measured signal, 

 Re    , is the autocorrelation function  , characterized by an amplitude and phase, as illustrated in (Fig. 2c).  

For a spectrum centered at 0 ,    0'S S    , it can be easily shown (via the shift theorem, see Appendix B) that the 

autocorrelation function has the form 
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Equation 8 establishes that the envelope of   equals the Fourier transform of the spectrum. If we assumed a 

symmetric spectrum, the envelope is a real function. Further, the phase (modulation) of   is linear with  ,   0    , 

where the slope is given by the mean frequency, 0 ,   0    .  

 This type of LCI measurement forms the basis for time-domain optical coherence tomography (Section 7.3.). 

The name “time-domain” indicates that the measurement is performed in time, via scanning the position of one of 

the mirrors. Alternative, frequency domain, measurements will be also discussed in Section. 7.4. 
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7.2. Dispersion effects 

In practice, the fields on the two arms of the interferometer are rarely identical. While the amplitude of the two 

fields can be matched via attenuators, making the optical pathlength identical is more difficult. Here, we will study 

the effect of dispersion due to the two beams passing through different lengths of dispersion media, such as glass. 

This is always the case when using a thick beam splitter in the Michelson interferometer (Fig. 3).  

 

Figure 3. Transmission of the two beams through a thick beam splitter. 
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Typically, the beam splitter is made of a piece of glass half-silvered on one side. 

It can be seen in Fig. 3 that field 1U  passes through the glass 3 times, while field 2U  passes through only once. 

Therefore the phase difference between 1U  and 2U  has the frequency dependence  
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where L is the thickness of the beam splitter, k0 the vacuum wavenumber, and n the frequency-dependent refractive 

index. This spectral phase can be expanded in Taylor series around the central frequency, 
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In Eq. 10, the individual terms of the Taylor expansion correspond to the following quantities: 

phase shift of mean frequency, 
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group velocity, 
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GVD has units of 2s s
m Hz m   and defines how a light pulse spreads in the material due to dispersion effects (delay 

per unit frequency bandwidth, per unit length of propagation). Note that GVD is sometimes defined as a derivative 

with respect to wavelength. 

We can now express the cross-spectral density as 
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In Eq. 14 we assume that the two fields are of equal amplitude, and differ only through the phase shift due to the 

unbalanced dispersion, like, for example, due to the thick beam splitter shown in Fig. 3. The temporal cross-

correlation function is obtained by taking the Fourier transform of Eq. 14. Let us consider first the case of 

negligible GVD, i.e. 2 0  , 
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Note that we can denote 0   as a new variable, to make it evident that the integral in Eq. 15 amounts to the shifted 

autocorrelation envelope,  
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Equation 16 establishes that, in the absence of GVD, there is no shape change in either the amplitude or the phase 

of the original correlation function. The phase shift,  0  , is due to the zeroth order (phase velocity) term in the 

expansion of Eq. 10, while the envelope shift, or group delay, is caused by the first (group velocity) term (Fig. 4). 

 

Figure 4. a) Autocorrelation function for a perfectly balanced detector. b) Phase delay (zeroth order) effects. c) Group delay 
(first order) effects. d) GVD (second order) effects. 
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Note that the envelope shift, 0
2

g

L
v  , can be conveniently compensated by adjusting the position of mobile mirror 

of the interferometer. We conclude that if the beam splitter material has no GVD, the interferometer operates as if 

it is perfectly balanced. 

Let us now investigate separately the effect of the GVD itself. The cross-correlation has the form 
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Note that the Fourier transform in Eq. 17 yields a convolution between the Fourier transform of S’ and that of 2
2iLe   , 

i.e. 
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Equation 18 establishes that the cross-correlation function 12  is broader than   due to the convolution operation. 

Roughly, convolving two functions gives a function that has the width equal to the sum of the two widths (for 

Gaussian functions, this relationship is exact). Thus, if   has a width of c (i.e. coherence time of the initial light), 

the resulting 12  has a width of the order of 12 22 L    . Somewhat misleadingly, it is said in this case that the 



14 
 

coherence time (or length) “increased”, or that dispersion changes the coherence of light. In fact, the 

autocorrelation function for each field of the interferometer is unchanged. It is only their cross-correlation that is 

sensitive to unbalanced dispersion.  Perhaps a more accurate description is to say that, in the presence of 

dispersion, the cross-correlation time is larger than the autocorrelation (coherence) time.  

This dispersion effect ultimately degrades the axial resolution of OCT images, as we will see in the next section. In 

practice, great effort is devoted towards compensating for any unbalanced dispersion in the interferometer. Since 

Michelson’s time, this effect was well know; compensating for a thick beam splitter was accomplished by adding 

an additional piece of the same glass in the interferometer, such that both fields undergo the same number (three) 

of passes through glass. 
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7.3. Time-domain optical coherence tomography 

OCT is typically implemented in fiber optics, where one of the mirrors in the interferometer is replaced by a 3D 

specimen (Fig. 5). In this geometry, the depth-information is provided via the LCI principle discussed above and 

the x-y resolution by a 2D scanning system, typically comprised of galvo-mirrors. The transverse (x-y) resolution 

is straight-forward, as it given by the numerical aperture of the illumination. Below we discuss in more detail the 

depth resolution and its limitation. 

 

Figure 5. Fiber optic, time domain OCT. 
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At each point  ,x y , the OCT signal consists of the cross-correlation 12  between the reference field RU  and specimen 

field SU , which can be expressed as the Fourier transform of the cross-spectral density 
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where      *R RS U U     is the spectrum of the source and  h   the spectral modifier, which is a complex function 

characterizing the spectral response of the specimen,  

     .S RU U h      20 

The two fields are initially identical, i.e. the interferometer is balanced, and the specimen is modifying the incident 

field via  h  . The resulting cross-correlation obtained by measurement is a convolution operation, as obtained by 

Fourier transforming Eq. 19. 
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where h is the time response function of the sample, the Fourier transform of  h  , 
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7.3.1. Depth-resolution in OCT. 

Note that the LCI configuration depicted in Fig. 1, i.e. having a mirror as object, is mathematically described by 

introducing a   response function,    0h      . In this case the cross-correlation reduces to (from Eq. 21) 

   12 0 ,       23 

where 0 2 / 2z   represents the time delay due to the depth location z of the reflector (Fig. 6). In other words, by 

scanning the reference mirror, the position of the second mirror is measured experimentally with an accuracy give 

by the width of the cross-correlation function,  12  .  
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Figure 6. a) Response from a reflector at depth z: a) the reference arm; b) the sample arm; c) the ideal response function from 
the mirror in b; d) the measured response from the mirror in b. 

OCT images are obtained by retaining the modulus of 12 , which is a complex function of the form 

     0
12 12

ie            . Thus, the high frequency component (carrier), 0ie   , is filtered via demodulation (low-pass 

filtering). Thus, the impulse response function of OCT is   . As illustrated in Fig. 6b the width of the envelope of 

  establishes the ultimate resolution in locating the reflector’s position. This resolution in time is nothing more that 

the coherence time of the source, C , provided that the interferometer is balanced. In terms of depth, this resolution 

limit is the coherence length, C Cl v , with v the speed of light in the medium. This result establishes the well known 

need for broadband sources in OCT, as 1
C 



. 
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Figure 7. Depth-dependent resolution in OCT. 

It is important to realize that the coherence length is the absolute best resolution that OCT can deliver. As 

mentioned in the previous section, the performance can be drastically reduced by dispersion effects due to an 

unbalanced interferometer. Further, note that the specimen itself does “unbalance” the interferometer. Consider a 

reflective surface buried in a medium characterized by dispersion (e.g. a tumor located at a certain depth in the 
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tissue), as illustrated in Fig. 7. Even when the attenuation due to depth propagation is negligible (weakly scattering, 

low-absorption medium), the spectral phase accumulated is different for the two depths (see Eq. 18), 

   
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where 2  is the GVD of the medium above the reflector.  

Therefore, the impulse response is broader from the reflector that is placed deeper ( 2 1L L ) in the medium. This is to 

say that in OCT the axial resolution degrades with depth.  
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7.3.2. Contrast in OCT 

Contrast in OCT is given by the difference in reflectivity between different structures, i.e. their refractive index 

contrast. OCT contrast in a transverse plane (x-y, or en face) also depends on depth. Figure 8 illustrates the change 

in SNR with depth. As can be seen, the scattering properties of the surrounding medium are affecting SNR in a 

depth-dependent manner. Thus, the backscattering ultimately limits the contrast to noise ratio in an x-y image. 

 

Figure 8. Signals from an object surrounded by scattering medium, illustrated in a). b) Depth-resolved signals for weakly 
scattering medium. c) Depth-resolved  signals for strongly scattering medium. 
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The signal and noise can be defined at each depth, as 

   
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where  N   is the standard deviation of the noise around the time delay  . This noise component is due to 

mechanical vibrations, source noise, detection/electronic noise, but, most importantly, due to the scattering from 

the medium that surrounds the structure of interest. 

 

Figure 9. En-face images corresponding to the two time-delays shown in Fig. 8. 

In an en face image, we can define the contrast to noise ratio as (Fig. 9) 
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where A and B are two structures of interest. 
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7.4. Fourier Domain and Swept Source OCT 

The need for mechanical scanning in time domain OCT limits the acquisition rate and is a source of noise that 

ultimately affects the phase stability in the measurements (note that generally OCT is not a common path system). 

Fortunately, there is a faster method for measuring the cross-correlation function,  12  . Thus, it is entirely 

equivalent to obtain 12  by measuring first the cross-spectral density,  12W  , and take its Fourier transform 

numerically, i.e. exploiting the generalized Wiener-Kintchin theorem, 

   12 12 .iW e d      27 

In 1995, Fercher et al., from University of Vienna, applied this idea to obtain depth scans of a human eye [3]. They 

also pointed out that  12W   can be measured either by a spectroscopic measurement, where the colors are dispersed 

onto a detector array, or by sweeping the wavelength of the source and using a single (point) detector. 

The principle of these frequency domain measurements is illustrated in Fig. 10. 
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Figure 10. a) Fourier Domain OCT. b) Swept source OCT. 

The total field at the spectrometer in Fourier domain OCT (Fig. 10a) is 

     ,R SU U U     28 
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Where RU  and SU  are the reference and specimen fields, respectively. As before, the frequency response of the 

object can be described by a complex function, the spectral modifier,  h  , such that the field returned from the 

specimen can be written as 

      0 /i s c
S RU U h e      . 29 

In Eq. 29 the phase factor 0 /i s ce   indicates that the two arms of the interferometer are mismatched by a pathlength 0s , 

which is fixed. The intensity vs. frequency detected by the spectrometer results from combining Eqs. 28 and 29, 
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In Eq. 30,     is the spectral phase associated with the object, i.e. the argument of the frequency modifier  h  . 

We can re-write Eq. 30 to better emphasize the DC and modulated terms,  

        01 cos / ,I a b s c             31 

where 
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Figure 11. a) Typical row signal in Fourier domain OCT. b) Symmetric depth-resolved signal obtained by Fourier 
transforming the raw data. 
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A typical signal  I   is illustrated in Fig. 11. Note that the modulation of the signal in Fig. 11 is quantified by the 

(real) function  b   (Eq. 32b). This function can be easily shown to satisfy the relationships 
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   
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Thus, not surprisingly, the highest contrast of modulation is obtained when the intensities of the two arms of the 

interferometer are equal,    R SI I   and the specimen only affects the phase of the incident field. 

In order to obtain the time domain response,  I  , the measured signal  I   is Fourier transformed numerically. 

Since  I   is a real signal, its Fourier transform is even (Fig. 11b). Let us consider for simplicity that the specimen 

has a “flat” frequency response in amplitude,   consth   , which is to say that the reflectivity of the object is not 

frequency dependent. In this case, the DC term, i.e. the Fourier transform of  a  , is nothing more than the 

autocorrelation function   . Further, let us consider that the object consists of a single reflective surface at depth 

0z . In this case the modulated term in Eq. 31 has the form    0 0cos / 2 /S s c z c    . The Fourier transform of this AC 

component has the form 
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Clearly, according to Eq. 34, the depth position of the object, 0z , can be experimentally retrieved from either side 

bands (delta functions), as shown in Fig. 11b. Like in time-domain OCT, the accuracy of this depth measurement is 

limited by the width of   , which convolves the entire signal, i.e. the coherence length of the illuminating field. 

The Fourier domain measurement is fully equivalent with its time domain counterpart.  

Note that the pathlength mismatch, 0s , is fixed and sets the upper value for depth that can be accessed in the 

specimen, max 0 / 4z s n , where n is the refractive index of the specimen. This can be easily understood by noting that 

the modulation of the  I   signal must be at least twice the maximum frequency of interest, i.e. 

0 max max/ 2 / 4 /s c s c nz c    .  

The description above holds valid for swept-source OCT as well, the only difference being that the frequency 

components of  I   are measured in succession rather than simultaneously. Recent developments in laser sources 

allow sweeping broad spectra at very high speeds, up to 100 kHz [4]. 
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In summary, Fourier domain OCT offers a fast alternative to acquiring depth-resolved signals. The detection via 

spectrometer makes the measurements single shot, such that the phase information across the measured signal  I   

is stable. This feature is the premise for using such a configuration in achieving point-scanning QPI. Below we 

describe the main developments associated with phase-sensitive imaging. Depending on whether or not the phase 

map associated with an object is retrieved quantitatively (in radians), we divide the discussion in qualitative 

(Section 7.5.) and quantitative methods (Section 7.6.).  

 


