

Aberration Theory

Gabriel Popescu

University of Illinois at Urbana-Champaign Beckman Institute

Quantitative Light Imaging Laboratory

http://light.ece.uiuc.edu

Consider a object imaged by the system below:

! The dotted lines do not make it through the system, i.e, they are blocked somewhere

- Two main type of limitations:
 - a) Solid angle Ω from the point on axis is limitted by the "ENTRANCE PUPIL"
 - b) field of view (i.e extent of the object) limitted by "ENTRANCE WINDOW"

a) Pupils

■ Entrance Pupil \equiv image of aperture stop in the <u>object</u> space

:

.

■ Exit Pupil ≡ image of aperture stop in the image space

- Entrance Pupil:
 - Limits solid angle Ω
 - Thus, limits the amount of light, i.e <u>brightness</u> of image
 - Angle from object is proportional to <u>spatial frequency</u>

So:

- Adjusting the pupil of our eyes, we adjust <u>brigthness</u> and <u>resolution</u>
- High brightness = high resolution, but may induce saturation and aberations
- Common issue in SLR photography

 Note: To find entrance pupil, image all optical elements in object plane and pick the one that subtend the smallest angle from object

b) Windows

■ Limi the solid angle made by rays at the center of the entrance pupil (chief rays) with OA

- Entrance Pupil = image of field stop in the object space
- Exit Pupil = image of the field stop in the image space

- Limits the field of view
- Note:
 - Space and angle are Fourier related
 - It is always a compromise between field of view and solid angle (NA)
 - To find the entrance window: image all components in object space, and pick the one subtending the smallest angle from the center of the entrance pupil.

2. Frequency analysis of coherent imaging

 Recall that the image field equals the object field convolved with the impulse response of the system (Eq 4.4)

$$\overline{U}(x',y') = U(x,y) \ \mathbf{\widehat{V}} \ h(x,y)$$

$$h(x,y) = \Im[H(\xi,\eta)] = \int \int \int H(\xi,\eta) e^{-i2\pi[x\xi+y\eta]} d\xi d\eta \quad \text{1 b})$$

H = transfer function (coherent)

2. Frequency analysis of coherent imaging

- $p(x_0, y_0) = \text{exit pupil}$
- Note: $\xi = \frac{x_0}{\lambda_z}$; $\eta = \frac{y_0}{\lambda_z} \Rightarrow H(\xi, \eta) = P(\lambda z \xi, \lambda z \eta)$

Example of a pupil

2. Frequency analysis of coherent imaging

Most common pupil function:

$$p(x_0, y_0) = \begin{cases} 1, & x_0^2 + y_0^2 \le R^2 \\ 0, & \text{otherwise} \end{cases}$$
 (2)

- So: Impulse response h is the Fraunhoffer diffraction pattern of P!
- This is a "diffraction-limitted" instrument, i.e. The best we can do in practice

3. Incoherent Imaging

■ If the illuminating field is spatially incoherent, i.e:

$$\langle U(x_1, y_1; t)U^*(x_2, y_2; t) \rangle = I(x_1, y_1)\delta(x_1 - x_2; y_1 - y_2)$$
 (3)

The system becomes linear in intensities:

$$\overline{I}(x', y') = I(x, y) |\hat{v}| |h(x, y)|^2$$
 (4) $|h|^2 = h \cdot h^*$

- The intensity impulse response: |h|²!
- Incoherent transfer function:

$$\mathfrak{I}[h \cdot h] \to \mathbf{V}$$

$$\Im[h \cdot h^*] \to \otimes$$

$$H_1(\xi,\eta) = \Im[|h(x,y)|^2] = \Im[|h \cdot h^*] = H(\xi,\eta) \otimes H^*(\xi,\eta)$$
 (5)

= autocorrelation of coherent transfer function

• Optical transfer function:
$$OTF = H_1(\xi, \eta) / H_1(0, 0)$$
 (5)

- So far, we assumed that points are imaged into points,
 - i.e perfect imaging
 - i.e diffraction-limitted system

$$Sin[\theta] \neq \theta$$

- i.e point-source object generates a spherical wavefront at exit pupil
- In reality, the outgoing wavefront is nonspherical, i.e aberrated

All the effects of wavefront errors, i.e aberrations can be accounted for by generalizing the pupil functions:

$$P'(x, y) = P(x, y)e^{ikW(x, y)}$$
(6)

- <u>Note</u>:
 - W(x,y) can be positive or negative
 - W is the local difference between the <u>actual</u> wavefront and the <u>reference</u> one
- h and H follow from Eq (6):
 - a) Coherent illumination:

$$\begin{cases}
H'(\xi,\eta) = P'(\lambda z \xi, \lambda z \eta) = P e^{ikW(\xi, \chi)} \\
h(x,y) = \Im[H(\xi,\eta)]
\end{cases}$$
(7)

- W can have severe effects on the final image
- **Exercise**: Calculate h for $k \cdot W = a(\xi^2 + \eta^2)$

b) Incoherent Illumination:

■ Recall Eq. 5:

$$H_{1}'(\xi,\eta) = H(\xi,\eta) \otimes H^{*}(\xi,\eta)$$

$$= P(\lambda z \xi, \lambda z \eta) e^{ikW(\lambda z \xi, \lambda z \eta)} \otimes [$$

$$]^{*}$$
(8)

Expressing the autocorrelation integral for a pupil function

$$\begin{cases}
P(x,y) = 1, inside \\
P(x,y) = 0, outside \\
\Rightarrow H_1'(\xi,\eta) = \iint_{A(\xi,\eta)} e^{ik\left[W\left(x + \frac{\Delta x}{2}, y + \frac{\Delta y}{2}\right) - W\left(x - \frac{\Delta x}{2}, y - \frac{\Delta y}{2}\right)\right]} dxdy \tag{9}
\end{cases}$$

$$\begin{cases} \xi = \frac{x}{\lambda z} \\ \eta = \frac{y}{\lambda z} \end{cases}$$

• Note: $\left|H_1'(\xi,\eta)\right|^2 \le \left|H_1(\xi,\eta)\right|^2$

- (10)
- → Aberrations can only reduce high freq of power spectrum
- \rightarrow Note that k=2 $\pi/\lambda \rightarrow$ wavelength dependence can have an efect, too! Important in broad spectrum imaging (e.g. white light).

■ Recall the dispersion curve from chapter 1.8 (Lorentz model):

- n' refractive index
- n" absorption
- We assume n'' \rightarrow 0, i.e our optical components are highy transparent

Consider a lens made of glass with n'(ω)

• Convergence
$$C = C_1 + C_2 - C_1 C_2 \frac{t}{n}$$

$$= \frac{n-1}{R_1} + \frac{1+n}{R_2} - \frac{(n-1)(1-n)t}{nR_1R_2}$$
(11)

■ Thin Lens: t = 0

$$\Rightarrow C = \frac{1}{f}$$

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \tag{12}$$

• If $|R_1| = |R_2|$

$$\Rightarrow \left| \frac{1}{f} = \frac{2(n-1)}{R} \right| \tag{13}$$

The dispersion effect is very clear:

$$f(\omega) = \frac{R}{2[n(\omega) - 1]} \Rightarrow$$
 focal distance varies with color! (14)

Differentiate Eq. 14:

$$d\left\lceil \frac{1}{f(\omega)} \right\rceil = d\left\lceil \frac{2(n-1)}{R} \right\rceil \tag{15}$$

$$-\frac{1}{f^2}\frac{df}{d\omega} = \frac{2}{R}\frac{dn}{d\omega} \tag{16}$$

$$\left| \frac{df}{d\omega} = -\frac{2f^2}{R} \frac{dn}{d\omega} \right| \tag{17}$$

$$\frac{df}{d\omega} = -\frac{2f^2}{R} \frac{dn}{d\omega}$$

$$\frac{dn}{d\omega} > 0 \implies \text{normal dispersion}$$

What is the negative sign telling?

- Most common correction: the <u>achromatic doublet</u>
 - → Sandwich of two lenses, one positive, one negative, which corrects the chromatic aberration at 2 colors (R&B)

For thin, closely packed lenses:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} \tag{18}$$

For thin, closely packed lenses:

$$\frac{1}{f(\omega_{1})} = \frac{1}{f(\omega_{2})} \Rightarrow \frac{2[n_{1}(\omega_{1}) - 1]}{R_{1}} + \frac{2[n_{2}(\omega_{1}) - 1]}{R_{2}} = \frac{2[n_{1}(\omega_{2}) - 1]}{R_{1}} + \frac{2[n_{2}(\omega_{2}) - 1]}{R_{2}} = \frac{n_{1}(\omega_{1}) - n_{1}(\omega_{2})}{R_{1}} - \frac{n_{2}(\omega_{1}) - n_{2}(\omega_{2})}{R_{2}}$$
(19)

$$\Rightarrow \frac{n_1(\omega_1) - n_1(\omega_2)}{R_1} = -\frac{n_2(\omega_1) - n_2(\omega_2)}{R_2}$$
 (20)

 R_2 = negative

$$\Rightarrow \left| \frac{n_2(\omega_1) - n_2(\omega_2)}{n_1(\omega_1) - n_1(\omega_2)} = \frac{R_2}{R_1} \right|$$

- This corrects for 2 colors
 - ! A microscope objective may contain more than 8 lenses
 - → correction to multiple colors

■ $Sin\Theta = \Theta \rightarrow paraxial approximation$

$$-\frac{\theta^3}{3!}$$
 Third order aberrations (Seidel) = primary aberrations

$$-\frac{\theta^5}{5!}$$
 \rightarrow Higher order

- 3rd order aberrations:
 - a)Spherical aberration
 - b) coma
 - c) astigmatism

Let's see what each means

- d) field cuvarture
- e) distortion

- a) Spherical aberration
 - Focal length depends on aperture

- To avoid SA in practice:
 - Stay close to optical axis (small aperture)
 - Polish off edge of lens
 (as in telescopes, microscope objectives)

b) Coma

 Occurs because principle planes (i.e. locus of conjugate points image with magnification 1) "curve" at large angles

Paraxial Approximation:

c) Astigmatism

- Different focus on perpendicular planes
- On axis, no difference between the planes

Meridional plane is perpendicular to sagital

meridional plane

sagital plane

d) Field curvature

With astigmatism: 2 paraboloidal surfaces

e) Distortion

Transverse magnification is a function of height

W = wavefront aberration

$$W = f(\beta, r, \psi)$$

$$eta=$$
 normalized field height $r=$ normalized pupil height $\psi=$ azimuth angle

Symmetries:

$$W(\beta, r, \psi) = W(-\beta, -r, -\psi)$$

 \rightarrow W depends only on $\beta^2, r^2, \beta r \cos \psi$

If $\beta = 0$ (on axis) \rightarrow W independent on Ψ

 \rightarrow W depends on $\beta r \cos \psi$

$$\rightarrow |W = W(\beta^2, r^2, \beta r \cos \psi)|$$

$$\Rightarrow W(\beta,r,\psi) = W_{000} + \\ + W_{200}\beta^2 + W_{020}r^2 + W_{111}\beta r\cos\psi + \\ \det \theta \cos\omega \qquad \text{tilt}$$

$$+ W_{400}\beta^4 + W_{040}r^4 + W_{131}\beta r^3\cos\psi + \\ \cot \theta \cos\omega + W_{222}\beta^2 r^2\cos^2\psi + W_{220}\beta^2 r^2 + \\ \det \theta \cos\psi + W_{211}\beta^2 r\cos\psi + \dots$$
 distortion